STUDY OF THE FECAL BACTERIAL POPULATION OF CHIMPANZEES | 0.011110 | | | |-------------------------|--------------------|--| | CFSTI PRICE(S) \$ | Phyllis E. Riely | | | Hard copy (HC) #6,00 | | | | Wild Collection (Will) | • | | | ff 653 July 65 | | | | | May 1966 | The second section of the second section is a second section of the second section of the second section is a second section of the second section sec | | | N66 30764 | | | | (ACCESSION NUMBER) | (THRU) | Distribution of this document is unlimited. 6571st Aeromedical Research Laboratory Aerospace Medical Division Air Force Systems Command Holloman Air Force Base, New Mexico The animals used in this study were handled in accordance with the "Principles of Laboratory Animal Care" established by the National Society for Medical Research. Gertain of the animals used for this research were provided by the National Aeronautics and Space Administration under Order R-25. This report is made available for study with the understanding that proprietary interests in and relating thereto will not be impaired. In case of apparent conflict or any other questions between the Government's rights and those of others, notify the Judge Advocate, Air Force Systems Command, Andrews Air Force Base, Washington, D.C. 20331. This report may be reproduced to satisfy needs of U.S. Government agencies. No other reproduction is authorized except with permission of the 6571st Aeromedical Research Laboratory, Holloman AFB, NMex. Do not return this copy. Retain or destroy. # STUDY OF THE FECAL BACTERIAL POPULATION OF CHIMPANZEES Phyllis E. Riely Distribution of this document is unlimited. ## **FOREWORD** This is the final report of a study conducted both in the Life Sciences Division of the Paul Moore Research and Development Center of Fairchild Hiller Corporation (Republic Aviation Division) at Farmingdale, L.I., New York and at the 6571st Aeromedical Research Laboratory, Holloman Air Force Base, Alamogordo, New Mexico, under Air Force contract AF29(600)-4991. This study was initiated by Air Force technical monitor Robert H. Levenson, Captain, USAF, VC and finished under the monitorship of Donald C. Van Riper, Captain, USAF, VC. This study was begun under the direction of Dr. Lorraine S. Gall and completed by Mrs. Phyllis E. Riely in conjunction with Mr. Darrell Beard and Dr. Helen E. Osburg under the supervision of Dr. James D. Gatts, Chief of the Life Sciences Division. The author wishes to thank the above personnel for their invaluable cooperation and assistance, and in addition to give technical credit to Shirley Dunwoody, Jaquelyn Miller, Fay Ames, Patricia Sterry, Charlotte Titus, Nancy Reardon, Carolyn Byers and Larry Peyser. This technical report has been reviewed and is approved for publication. C.H. Kratochvil, Lt Colonel, USAF, MC Commander # ABSTRACT 30764 Cultures isolated from rectal swabs obtained from one hundred chimpanzees, as well as from two fecal samples from five chimpanzee handlers, were studied. The data obtained from the aerobic bacterial studies were summarized in tables grouping the occurrence of the Enterobacteriacea, streptococcus, and miscellaneous aerobes so that comparisons could be made with the results obtained on two prior studies. The data of the occurrence of the anaerobic bacterial cultures were summarized in tables as obligate or facultative anaerobes, using the same method of grouping the cultures as in prior studies. Differences in the anaerobic character of chimpanzees and human fecal populations was noted; the percentage of obligate anaerobes exceeding 90% for the human cultures, and ranging between 26% and 71% for the chimpanzee cultures. A literature survey was conducted to aid in the evaluation of the potential pathogenicity of bacterial strains isolated from the chimpanzee. A remarkable similarity exists in the aerobic flora of primates, although differences in the pathogenicity of particular species of bacteria for various primate hosts have been reported in the literature. Carrier states are prevalent in the chimpanzee. The anaerobic fecal population of the chimpanzee differs from man. # TABLE OF CONTENTS | Section | <u>Title</u> | | | | | | | Page | |---------|--------------------------------|-----|----|---|---|---|---|------| | I | INTRODUCTION | | | | | | | 1 | | | Enterobacteriaceae | • | • | • | • | | • | 1 | | | Mycobacterium | • | | • | • | • | • | 5 | | | Pseudotuberculosis | • | • | • | • | | • | 6 | | | Streptococcicosis | • | • | • | • | • | • | 6 | | | Mycosis | • | • | • | • | • | • | 6 | | п | METHODS | | | | _ | | _ | 7 | | | Collection of Samples | | • | | • | • | • | 7 | | | Bacterial Culturing Techniques | • | • | • | • | • | • | 7 | | ш | DISCUSSION OF RESULTS | | | | | | | 10 | | | Streptococci | • | - | • | • | • | • | 10 | | | Corynebacteria | • | • | • | • | • | • | 11 | | | Spirochetes | | | • | • | • | • | 11 | | | PPLO | | • | | • | • | • | 11 | | | Miscellaneous Aerobes . | • | • | • | | | • | 12 | | | Fungi | | • | • | • | • | • | 12 | | | Enterobacteriaceae | • | • | • | • | • | • | 13 | | | Mycobacteria | • | • | • | • | • | • | 14 | | | Lactobacilli | • | • | • | • | • | • | 15 | | | Fecal Anaerobes | • | • | • | • | • | • | 16 | | IV | CONCLUSIONS AND RECOMMENDA | TIO | NS | • | • | | • | 23 | | v | TABLES | • | • | • | • | • | • | 25 | | | APPENDIX I - TECHNIQUES . | • | • | • | • | • | | 187 | | | APPENDIX II - MEDIA COMPOSI | TIC | N | • | • | | | 196 | | | REFERENCES | | | | | | | | | | | | | | | | | | # TABLE OF ILLUSTRATIONS | <u>Table</u> | <u>Title</u> | Page | |--------------|---|-------| | 1 | Animals Sampled (Brief History) | 25 | | 2 | Aerobic Microorganisms Found in Normal Human Feces With Comparison to those Found in the Chimpanzee | . 29 | | 3 | Streptococcus From Feces | . 30 | | 4 | Streptococci (Handlers) From Feces | . 58 | | 5 | Occurrence of Corynebacterium | . 59 | | 6 | Recovery of Spirochaetales from Deep Blood Flasks | . 60 | | 7 | Occurrence of PPLO | . 61 | | . 8 | Comparison of Miscellaneous Aerobes Recovered From Feces | . 62 | | 9 | Types of Fungi Isolated | . 94 | | 10 | Comparison of Gram Negative Bacilli Recovered From Feces | . 110 | | 11 | Enteropathogenic Strains of $\underline{E.~coli}$ Antigens | . 142 | | 12 | Pattern Differentiation | . 143 | | 13 | Mycobacteria | . 144 | | 14 | Lactobacilli Isolated from Rogosa's Plates | . 146 | | 15 | Growth Height of Anaerobic Dilution Tube and Counts from Aerobic Counting Plate | . 148 | | 16 | Distribution of Anaerobes in Fecal Samples from Chimpanzees | . 149 | | 17 | Distribution of Type Cultures in Comparative Chimpanzee Studies According to Occurrence | . 174 | | 18 | Distribution of Type Cultures in Comparative Human Studies According to Occurrence | . 176 | | 19 | Screen Test for Predominating Obligate and Facultative Anaerobic Fecal Bacteria | . 177 | | 20 | Lipase Production | . 185 | | 21 | Effect of Selected Fecal Anaerobes Isolated from the Chimpan-
zees on Fatty Acids | | #### SECTION I #### INTRODUCTION The normal flora of the alimentary tract of chimpanzees in captivity was determined under Contract AF29(600)-4124⁽¹⁾ and the effect of diet on this flora was studied fully under Contract AF29(600)-4555⁽²⁾. This baseline information is valuable in the medical care of chimpanzee colonies since many illnesses and deaths of chimpanzees have been attributed to inflammatory diseases of the alimentary tract. In a broader application, this fecal flora serves as a baseline to calculate possible effect of varying stresses and their significance as applied to man's nutritional state. It is recognized that the chimpanzee is one of the key experimental animals used in preparation for manned space exploration and, therefore, it is essential to establish the relationship between the normal alimentary flora of
chimpanzee and man as well as correlating this flora with other primates. To determine the potential pathogenicity of bacterial strains isolated from the feces of chimpanzees at the 6571st Aeromedical Research Laboratory, a survey of the literature was conducted. ## **ENTEROBACTERIACEAE** Monkeys have many of the same bacterial inhabitants of the gastrointestinal tract as do men. Within the family of Enterobacteriaceae, the tribes are not sharply differentiated and there are many intermediate forms with their own biochemical reactions which are reproducible, but which do not appear to place them in a particular tribe. The pathogenicity of these tribes is still the subject of discussion among bacteriologists, although shigella and salmonella are usually considered pathogenic; and at least some species of these genera cause serious illness in monkeys as well as in men. The study of the flora of the intestinal tract of monkeys and apes is remarkable in the paucity of data available. However, in one study done by Dietrich⁽³⁾, stools of 237 Macaca mulatta were cultured shortly after their arrival in the United States from India. The results of that study show the presence of several gram negative rods and <u>Candida sp.</u> The occurrence of the various types of proteus and paracolon organisms is not unexpected, but it is surprising to find the negative cultural findings on 35 or 13.7% of the monkeys tested. The low rate of isolation of shigella and salmonella in these healthy monkeys was commented on by Dietrich as being unusual in view of Hardy's⁽⁴⁾ findings that shigella and salmonella were widely present in primates. Schneider et al⁽⁵⁾ in their publication on studies of pathogenic enteric bacteria in a large primate colony stated that monkeys are often asymptomatic carriers of shigella and salmonella as 28 of 92 apparently healthy animals were positive for one of these two bacteria in their study. This finding was confirmed by further studies on 3193 healthy rhesus and 1219 healthy cynomolgus monkeys at different seasons of the year which showed an overall recovery of shigella in 21.5% of the rhesus and in 4.3% of the cynomolgus monkeys. In the summer the highest percentage of shigella occurred in the rhesus and the lowest in the other monkeys. Salmonella was found in 11.1% of the rhesus and 15.5% of the cynomolgus monkeys with the highest incidence in the summer. Schneider⁽⁵⁾ also noted the natural spread of shigella and salmonella among associated animals and found that shigella was transferred readily to other animals, while salmonella did not spread rapidly. These authors also found that the potentially pathogenic serotypes of <u>E. coli</u>, 0-111 and 0-55, were readily isolated from apparently healthy monkeys. The strain 0-111 was found in about one-third of 75 animals studied. In 1934, Dack and Petran⁽⁶⁾ recognized that enteritis in monkeys was caused by organisms which also infected man. It was also established by Rewell and Bridges⁽⁷⁾ and Cruickshank and Bray⁽⁸⁾ that shigella infection was responsible for the deaths of monkeys in various shipments. An interesting study performed by Galton et al⁽⁹⁾ in which 500 fecal cultures from chimpanzees and monkeys were examined, found that 72 shigella and 22 salmonella cultures were positive which was in contrast to 95,000 fecal cultures from humans in the same locality with recovery of only 2 shigellas. In Cook's⁽¹⁰⁾ recent studies in which 339 monkeys were cultured, 129 carried shigella of varying types without symptomatology. In another study by Barnes et al⁽¹¹⁾, 787 rectal swabs were obtained from monkeys and 157 positive shigella strains were recovered. Shiga bacillus is the organism causing the most severe entertis in man, but no Simian infections with or without symptoms have been reported. In contrast Sh. schmitzii is the type found most frequently in apes and monkeys. In an excellent book, "Comparative Pathology in Monkeys", Lapin and Yakovleva⁽¹²⁾ stress the fact that the diseases they describe are diseases under the specific conditions of the Sukhumi animal house. These conditions do not duplicate normal habitat, but are probably duplicated in many animal houses. The material is based on dissection of a thousand monkeys. The authors succeeded in demonstrating that the strains of dysentery bacilli obtained from men are almost nonpathogenic in monkeys, but, conversely, most of the animals die from dysentery. The authors also discuss tuberculosis and note the apparent paradox that experimental infection and natural disease are theoretically different things. Paradoxical findings on the comparatively high resistance of monkeys to dysentery and tuberculosis follow naturally from the data on the low morbidity of animals in the main group, especially those living in open air cages. "Many scientists have published articles on dysentery in monkeys (13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25) and ... Several of these authors note the prevalence of the carrier state without any clinical symptoms of the disease. An outbreak of the disease usually causes the death of many animals. (12) Dzhikidze (25) found no distinct seasonal variations in the spread of dysentery and felt that Flexner's bacillus was the most common agent. Many of the authors noted that an increase in the number of cases of dysentery usually coincided with the arrival of new animals. There is a marked difference in the colitis rate of animals that have been in the monkey house for a long period of time in contrast to the newly arriving. For example, 14% of newly arrived monkeys carried Flexner's bacillus and 11% died, while the main group included 21% carriers with only a 3% incidence of active dysentery. Data collected in 1957 when 400 Indian monkeys were delivered indicated 76.5% of these animals were sick and 64% carried identifiable Flexnertype bacilli. Of those carrying the bacillus, 31% died. During the same period, the main group of 600 monkeys included 32.5% carriers and only 4.3% were sick and eventually 13 died (2%). The part played by Morgan's bacillus in the pathology of man is still undefined. Lapin et al⁽¹²⁾ felt that Morgan's bacillus should be classified with proteus and attributed 35% of the summer diarrhea to infection with <u>Proteus sp.</u> Salmonellae pathogenic for animals show a particular pathogenesis which might be classified as hemorrhagic ulcerative colitis. There appeared to be a small number of paratyphoid carriers in the main group of monkeys in the Sukhumi monkey house. Paratyphoid did not appear to be prevalent as a disease in monkeys (12). 'The macaque and the chimpanzee, especially immediately after importation, may harbor Sh. dysenteriae, Sh. flexneri, or Sh. sonnei, and the infection may be mixed, an animal being simultaneously infected with more than one strain of shigellae or with both shigellae and salmonellae. Although acute shigellosis has occurred in Ateles and Cercopithecus, there is no body of information on incidence and strains in New World and African monkeys as there is for macaques and chimpanzees. The few reports of types indicate no unusual forms. The Flexner bacillus is notoriously heterogeneous, and the mulatta macaque may have its own variant, the Mulatta type (=4b) having been encountered in several shipments. This strain is relatively rare in humans. Fortunately, as far as danger to man is concerned, it is type 2 (Schmitz' bacillus) rather than type 1 (Shiga's bacillus) of Sh. dysenteriae that naturally infects simians, and an experimental study indicates a resistance, at least in mulatta macaques, which would preclude their participating in human epidemics caused by Shiga's bacillus' (12). The primates, including man, present a particular problem in relation to the carrier state since many animals and/or men remain apparently healthy despite the presence of large numbers of potentially pathogenic organisms in the stools. This is particularly important in connection with bacillary dysentery since there are many reported cases of unapparent shigella infections which were followed by the outbreak of frank infections. The only bacteriologically discernable difference in the existence of shigella between healthy and sick monkeys is in the number of colonies present upon culture of the stool. The lightly infected animals represent a threat both to monkeys and to man; as it is difficult to properly weigh the part that natural resistance plays in susceptibility to shigella. Since it was shown by Dzhikidze (26) that healthy monkeys may carry and pass shigella temporarily, it was felt that no chronic carrier was truly healthy even though its general condition had not been obviously effected. 'When a monkey is living in equilibrium with shigellae, dietary deficiency or any of many other stresses (transportation, experimental and natural infections, surgical operations, pregnancy and lactation, etc.) may upset this balance in favor of the bacilli. (27) The most dramatic incidence was reported by Bach et al $^{(28)}$ when three of the victims, all children under five, died. As was documented by Snijders $^{(29)}$ and by Carpenter and Sandiford $^{(30)}$ the shigella which infects monkeys may also cause dysentery in man. The usual source of salmonellosis is from another animal, although food, rodents, and contaminated eggs have been indicted as sources of infection. The incidence of salmonellosis in laboratory monkeys varied greatly. For example, Habermann and Williams (31) found salmonella in 19.5% of a large series of monkeys while Garner and Morales (32) found the organisms in over 60% of a 500 sample. In these surveys most of the infected animals were apparently healthy. # **MYCOBACTERIUM** All the available data on tuberculosis in monkeys indicate that the animals are highly susceptible to this disease. Records from the monkey house determine that roughly 6.5% of the deaths were due to tuberculosis. It was difficult to ascertain whether the
rate of tuberculosis was due to infection spread by new shipments of monkeys, overcrowding of monkeys during shipping, or increased susceptibility due to lowered resistance. (12) In some of the earliest works on the management of captive primates tuberculosis ranks among the leading causes of death (33). It is extremely difficult to use the tuberculin test to determine infectivity since many of the animals prior to death become anergic and it is impossible to determine via a skin test the presence of tuberculosis. All three types of tuberculosis have been found in monkeys although they seem less susceptible to the avian strain of the bacilli. (34) Importance has been attached to the spread of tuberculosis via gastrointestinal tract and the eating of food contaminated by feces carrying the tubercular bacilli. A study by Habermann and Williams (31) showed an infection rate of 21.5% among 615 necropsys of Macaca mulatta. A tropical laboratory posted 539 new world monkeys and found no evidence of tubercular leisions⁽³⁵⁾. This would seem to indicate that tuberculosis is rare in monkeys in their natural habitats. Difference in species resistance has been claimed by many workers, but has never been documented. #### **PSEUDOTUBERCULOSIS** Pseudotuberculosis which is due to a gram negative bacillus of the pasteurellae group appears to be fairly prevalent in monkeys. The clinical signs include a mild diarrhea and little is known about the natural mode of transmission, although monkeys may contract it by eating food contaminated by rats. There have been some reports of transmission of this disease to humans from monkeys. #### STREPTOCOCCICOSIS It is possible that massive infection of hemolytic streptococci may be diagnosed from fecal cultures. This particular bacteriological agent should be considered in diagnosing acute febrile illnesses. #### MYCOSIS The use of antibiotics has brought bacterial diseases under greater control, but has allowed yeast and fungi to become a greater problem. These mycotic organisms may become prevalent in the normal flora if suppressed or destroyed. Some of the mycotic lesions were found to be due to coccidioidomycosis and cryptococcosis or torulosis. Yeast-like fungi of the genus Candida are normal residents of the mouth, intestinal tract, and skin of monkeys and tend to be secondary invaders. Aspergillosis may be either a secondary or primary invader. The seven species of Candida commonly isolated from man are: albicans, tropicallis, pseudotropicallis, krusei, parakrusei, guilliermandi, and stillatoides. C. albicans is most frequently pathogenic, but C. tropicalis, C. pseudotropicalis, C. krusei and C. guilliermandi have been reported as causes of human disease. C. albicans has been isolated from 15% of fecal samples of normal human beings. ## **SECTION II** #### METHODS The methods for collecting and culturing the fecal samples from the chim-panzees by both aerobic and anaerobic techniques are described briefly in this section while details of the bacteriological techniques and media are contained in Appendix I. The animals sampled are shown in Table 1. # 1. Collection of Samples Two samples were collected from the rectum of each chimpanzee tested by swabbing the rectum with dry "swubes" (swabs with a protective plastic sheath), which were placed immediately into broth. One swab was placed into 0.5 ml Gall's broth and was used for the aerobic culturing, while the other swab was placed into 1.0 ml of Gall's broth to which had been added enough cysteine to reduce the potential of the medium to approximately -200 mv. (The composition of Gall's broth and the cysteine solution are described in Appendix I). # 2. <u>Bacterial Culturing Techniques</u> Both the aerobic and anaerobic primary culturing of the samples were done immediately in the field laboratory at Holloman Air Force Base by inoculating the specified media and incubating at 37°C. All cultures showing growth were transported to the Republic Aviation Division Laboratory for further study. All broth cultures were transferred to solid media prior to transport. The aerobic culturing of the rectal samples was carried out on various differential media designed to selectively culture certain types of bacteria. MacConkey's, Bismuth sulfite (BS), Salmonella-Shigella (SS), and Tetrathionate broth were used to isolate Enterobacteriaceae from the feces. Mitis Salivarius (MS) and Phenylethyl Alcohol (PEA) were used for streptococci and staphylococci, while Rogosa's agar as a pour plate was employed for lactobacilli. Phytone-yeast agar slants were used to isolate fungi. Blood agar plates were used to culture fastidious bacteria not encouraged by the other media. An aerobic counting plate was also made from each sample. The plates were read after the appropriate incubation period, sealed with plastic rings, refrigerated and returned to the central laboratory at Republic for further processing, where selected colonies from each plate were picked into nutrient broth, Gram stained and separated into the proper category for identification as indicated for each type of culture in Appendix I. Tetrathionate broth showing growth was immediately inoculated on BS, SS, MacConkey's and Brilliant Green agar which were incubated, and returned to Republic for study and identification as above. The anaerobic culturing of rectal samples was performed immediately by the serial dilution of the sample in Gall's broth made anaerobic by the addition of cysteine, as shown in Appendix I, and incubated anaerobically. When growth was observed, agar shakes of the cultures were made to allow transport of the cultures to the Republic laboratory. In addition, two anaerobic pour plates were made from appropriate dilutions of the fecal samples and a blood plate was made from all samples and incubated anaerobically. The details of these primary isolation procedures are contained in Appendix I. The agar shake cultures, the cultures on anaerobic Petri plates and blood agar plates, were sealed and refrigerated until returned to the Republic laboratory for further study. The anaerobic cultures from the agar shakes representing the top three dilutions of fecal material and the colonies from the anaerobic Petri dishes were purified when necessary and were studied by means of screen tests to allow their comparison with a 'key' setup in the Republic laboratories with the anaerobes isolated from human feces. The colonies on the blood plates were picked into nutrient broth, Gram stained and separated into the proper category for further study leading to their identification. Details of the procedures used to screen test the anaerobes and identify the cultures from the blood plates are contained in Appendix I. A Gram stain was made from the original aerobic swab of the rectal sample, and was observed for the morphological types of bacteria present. The data obtained from the aerobic bacterial studies were summarized in tables grouping the occurrence of the Enterobacteriaceae, streptococci and miscellaneous aerobes so that comparisons can be made by sampling period and also for each animal. The data of the occurrence of the anaerobic bacterial cultures were summarized in tables as obligate anaerobes or facultative anaerobes, using the designation derived from the anaerobic "key" so that the same comparisons can be made as for the aerobic cultures. ## SECTION III #### DISCUSSION OF RESULTS The work under this contract, while emphasizing any potential pathogenicity characteristic individual bacterial isolates, has included the isolation and identification of all bacteria appearing on the fecal swab sample obtained from both the chimpanzee handlers and the chimpanzees. This work is grouped and discussed as to the various bacterial strains isolated. In a comparison of the aerobic microorganisms found in human feces as established by Rosebury⁽³⁶⁾, the NASA study⁽³⁷⁾, and the two Air Force studies ^(38,39) as well as those with the chimpanzee are shown in Table 2, it becomes apparent that little difference exists in the total microbial population. The individual variation between animals is very similar to that observed in the human studies as is the change brought about by various dietary regimens. The only exception is the isolation of Mycobacteria from chimpanzees and handlers in the last field trip of the present study. This was the only sampling period in which specific media were included for the detection of this particular group of microorganisms. #### STREPTOCOCCI Based on biochemical and physiological activity, the aerobic and facultative anaerobic species of streptococci have been divided into four main divisions consisting of (1) hemolytic pyogenic streptococcus, (2) viridans streptococcus, (3) lactic group of <u>Streptococcus lactis</u>, and (4) enterococci. The comparison of the streptococcus appearing in the fecal samples is shown in Table 3. Str. salivarius and Str. mitis as well as enterococci were recovered from almost every sample of every animal. In addition, a group F streptococci was recovered from many animals and is listed under the "non-types" with an asterisk to denote possible pathogenicity. This beta-hemolytic streptococcus recovered from the blood plates and listed as untypable has been identified as a member of the streptococcus Group F Lancefield classification, but with no specific serotype, as determined by Dr. Rebecca Lancefield of the Rockefeller Institute of New York. This round coccus forming short chains is most easily isolated under anaerobic conditions. It ferments inulin, lactose, sucrose and glucose, shows slight fermentation of raffinose, glycerol, sorbital, and mannitol, forms a soft, acid curd in litmus milk with partial or no reduction, and produces a pH of four in one percent glucose broth in twenty-four hours. Sporadic isolation of Type C and G and occasionally Type A members of the Streptococci occurred. With the exception of the first sampling
period on the present contract, distribution of the cultures remained relatively stable. In this first sampling period, many facultative members of the Enterococci were recovered and their occurrence might indicate an endemic situation. During the last field trip, the chimpanzee handlers were sampled and carried Str. salivarius and only an occasional isolation of Enterococci was noted (Table 4). #### CORYNEBACTERIA The occurrence of Corynebacteria during the fourth sampling period of this contract is shown in Table 5. This table indicates that <u>Corynebacterium xerosis</u> was the most frequently isolated member of the Corynebacteria and appeared on all but two of the men and on four of the chimpanzees. These isolations of Corynebacterium point out the nonprevalent character of this organism in the bacterial flora of the intestine. The isolation of three members of <u>Corynebacterium acnes</u> from the intestinal flora of the chimpanzee is interesting. # SPIROCHETES Although the recovery of Spirillum from the intestinal tract of chimpanzees and men is documented in Table 6, its significance is unknown. According to Ruch⁽²⁷⁾ its presence has been reported in the intestinal tract, but no pathological correlations have been made; although he felt that intestinal diseases might favor the multiplication of spirochetes. These cultures were obtained from deep blood flasks and the identification was based on morphology using a Fontana stain. #### PPLO The presence of PPLO as shown in Table 7 would indicate that a substantial portion of the chimpanzees carried some form of mycoplasma. Bacteriologists differ in their interpretation of the significance of the isolation of PPLO. When it is found in the urogenital tract it is felt to have pathological significance. We have isolated it in many instances from the top dilutions of fecal cultures of both men and chimpanzees. If, for no other reason than the confusion its undetected presence brings to the biochemical identification of cultures, it is important. Much work remains to be done in determining the physiological significance of its presence either to the host or to the other microorganisms in the intestine. # MISCELLANEOUS AEROBES In the comparison of the miscellaneous aerobes recovered from feces, as shown in Table 8, a beta-hemolytic gram positive rod was isolated twice from Denise, Donald, Manuel, Mark, Mimi, Red and Sonia, and once from Elbys, Phil, and Randy. This organism has been identified tentatively as a strain of Clostridium aerofoetidum which had become oxygen tolerant. Several animals seemed to carry coagulase positive strains of staphylococci as part of their normal microbial flora. Although it was not isolated at every sampling period from these animals, it was recovered at many sampling periods over a long period of time. Among the sporadic isolations of staphylococcus, two potential pathogens were detected (mannitol salt coagulase positive strains); one on Penny (Holloman #276) and the other on the handler, A. Taylor. A few cultures of haemophilus were observed. According to Rosebury (36), this species has not been recorded as part of the intestinal microflora; however, we have frequently observed its presence both in men and chimpanzees, but have attached no medical significance to its presence. ## **FUNGI** The types of fungi isolated from the 100 chimpanzees are shown in Table 9. Members of the <u>Candida sp.</u> group were the most frequently isolated microorganisms. <u>Candida sp.</u> occurred in 31.4% of the animals, <u>C. albicans</u> in 40%, and <u>C. tropicalis</u> in 2.9%. <u>Trichosporon sp.</u> showed a consistent occurrence in some animals; for example, Donald and Elbys as well as Manuel, Mark, Mimi, Randy, Red and Sonia carried these organisms in more than one sampling period. ## **ENTEROBACT ERIACEAE** The fecal samples from 100 chimpanzees were plated on MacConkey's, EMB, and cultured in tetrathionate broth. Fifteen percent of the samples showed no coli present with the method of sampling; i.e., a fecal swab taken from the rectum of the chimpanzee and was placed immediately in Gall's broth, mixed thoroughly, and 0.1 ml of this broth was plated directly onto the differential media, and 0.5 ml was placed in tetrathionate broth. This percentage of nonrecovery correlates closely with Dietrich (3) who had negative cultural findings in 14.7% of the monkeys he tested. The relatively low incidence of Shigella (2.4%) and of salmonella (8.3%) also agrees with Dietrich's study (3). The incidence of proteus was quite high; positive results occurring in 43.5% of the animals. Pseudomonas occured in 11.8% of the animals, alkalescens dispar in 4.7%, klebsiella in 3.5%, aerobacter in 31.8%, and typable coli in 4.8%. On the whole, the animals sampled during this particular contract showed a much lower incidence of potentially pathogenic members of the Enterobacteriaceae than did those animals cultured in the prior two studies (1,2). Whether this is an indication of improved handling conditions, stabilization of diet, or of medication has not been determined. In the comparison of the Enterobacteriaceae from animals which were sampled repeatedly, it is interesting to note that certain types of bacteria seemed to be found consistently, while those members of the Enterobacteriaceae suspected of potential pathogenicity were isolated sporadically. In an attempt to establish a diet or stress factor in the occurrence of these sporadic isolations, it was noted that change in diet appeared to be associated with the isolation of a variety of strains and would indicate a state of flux or confusion in the gut. This is probably the result of a change in the nutrients being supplied to the bacteria and the competitive efforts of various strains which take place prior to the establishment of the predominance. These data should be correlated with the corresponding anaerobic data since the anaerobes may produce a substance which keeps the aerobic population in check (40); and the anaerobes are much more diet-dependent (2). If the number of anaerobes is substantially reduced, a predictable rise in the number of potential pathogens may occur. Since many different media are used for the recovery of the aerobic fecal population, it is felt that the results in Table 10 represent a true picture of the predominating bacterial populations at each particular sampling period. For example, gram negative rods which were recovered on blood agar were also screened to determine their correlation to those found on the selective media. The indigenous status of aerobacter was established by its repeated recovery from those animals in which it occurred. The potential pathogenicity of coli as established by the Table 11 indicates that several pathogenic types have been isolated from these animals including Poly A, 0111:B4 and Poly A 055:B5. The typable coli found on the chimpanzees are shown on Table/10. Not as many typable coli were found in this particular contractual study and this may be an indication of the improved health status of these animals. At least it is another indication, as is the lower prevalence of shigella and salmonella, of the state of the health of the animal. The increased incidence of proteus cultures does not seem to indicate an adverse condition in the intestinal flora of the chimpanzee. There are many biochemical patterns established by different strains of Enterobacteriaceae which are repeatable, but do not seem to fall in the recognized classification as established by Edwards and Ewing⁽⁴¹⁾. For this reason, Patterns A through K have been included in our identification schema and their biochemical patterns are shown in Table 12. Pattern B may be a strain of citrobacter which is indol positive. Pattern E would fall into the older classification of Proteus inconstans, but since Edwards and Ewing⁽⁴¹⁾ did not use this particular classification, we have included it as a pattern. Pattern K closely resembles providence differing in the fact that the majority of providence strains do not ferment sucrose while this strain does. # **MYCOBACTERIA** Lowenstein's medium was inoculated from samples of the feces of the chimpanzees and of their handlers. Repeated smears were made from the cultures showing growth and were stained by the Ziehl-Nielsen Method for acid-fast bacilli. Few of the smears showed organisms typical of <u>Mycobacteria sp.</u>, but many smears showed acid-fast granules, partially acid-fast microorganisms and acid-fast bacilli of morphology not typical of mycobacteria. However, <u>Mycobacterium tuberculosis</u> has a complex life cycle which includes a variety of forms ranging from overall granules to long filaments and bizarre forms can be induced under treatment with chemicals or antibiotics. In Table 13, microscopic identification by Ziehl-Nielsen stain of the cultures on Lowenstein's medium is tabulated: presence or absence of acid-fast material is noted and the bacteria observed are classed as being typical or atypical of Mycobacterium tuberculosis. The original cultures, and also subcultures to fresh Lowenstein's medium, are still under incubation. Subcultures have also been made to Lowenstein's medium containing 3.5, 10, 100 Mcg. streptomycin, 10, 100 Mcg. PAS, and 0.2, 1, 5 Mcg INH (isoniazid). Results will be reported following further incubation. ## LACTOBACILLI The lactobacilli, including many of the fecal anaerobes, comprise an ill-defined genus of the family Lactobacillaceae. These gram positive microaerophilic or anaerobic rods show varying morphological and physiological characteristics. In man and primates, lactobacilli are found in the mouth and lower intestine $^{(42)}$. Both saprophytic and parasitic species are regarded as important to the well-being of the host since substances produced in the course of their metabolism may be beneficial or deleterious $^{(36)}$. Lactobacilli were recovered from 75% of the fecal cultures of the 100
chimpanzees. During the fourth field trip a more intensive study of the lactobacilli was carried out, including optimal temperature, salt tolerance, fermentation of mannitol, mannose, and arabinose as well as the reaction in litmus milk. These organisms were then keyed according to Rosebury (36). (Table 14) Lactobacilli have been classified as homofermentative and heterofermentative. Homofermentative lactic acid bacteria (in which group the lactobacilli are often placed) produce chiefly lactic acid from glucose by means of one pathway, while the heterofermentative bacteria produce lactic acid and a variety of end-products by another pathway. During the last field trip both homofermentative and heterofermentative species and varieties were isolated from the feces of the chimpanzees and from the feces of the animal handlers. A difference, probably due to dietary influences, was noted in the isolations from the humans and the chimpanzees. <u>L. casei</u>, a lactobacillus associated with milk and cheese products, was isolated in three instances from the feces of the animal handlers, but was not recovered from the feces of the chimpanzees. Many more representatives of the heterofermentative group IV, <u>L. fermenti</u> and its varieties, were recovered from the chimpanzees. A number of atypical varieties were isolated from the chimpanzees but not from the humans. These may be organisms peculiar to primates other than man. # FECAL ANAEROBES Using techniques similar to those employed in this study, the predominance of anaerobic bacteria over aerobic bacteria in the feces of the chimpanzees and humans was demonstrated in work done under contracts (1, 37). In all these studies the overall average difference between anaerobes and aerobes exceeded 1000. In the Wisconsin study (2) various diets seemed to influence the anaerobic population with the percentage of strict anaerobes to facultative anaerobes ranging between 19% and 65%. This is in marked contrast to human studies where the obligates exceed 90% of the total anaerobic population. In this study, the first two field trips showed a marked predominance of facultative organisms (74% to 26% and 71% to 29%) while in the last two field trips, the obligate anaerobes predominated (67% to 33% and 61% to 39%). In Table 15 the comparative degree of anaerobiosis is shown by a comparison between the height of growth as shown by the anaerobic tube designation and the aerobic plate count. This indicates a difference between the aerobic and anaerobic bacterial levels of at least two logs and as many as four logs in some instances. These differences are of the same order of magnitude as those encountered in the prior two studies of the chimpanzees (1,2). In Table 16 the comparison of the anaerobes isolated from a particular animal at many different sampling periods is documented. In the nineteen samplings of the fecal microflora of Sonia, fairly good correlation was obtained as in the seventeen samplings of Mimi. Close correlation was also noted on animals Phil and Randy. This is in contrast to the poor correlation observed in the four samplings of Possum, the three samplings of Richie, and the two fecal samplings of Pop. Fay and Floyd showed the same degree of inconsistency as did Gloria, Gromic, and Guy. Manuel, although sampled sixteen times, showed repetition of only two cultures in the obligate anaerobic group; but better correlation was obtained with his facultative flora. Andy, Annie and Betty, while consistent in their facultative anaerobic fecal populations, showed random isolations of obligate anaerobes. Elbys was sampled a total of sixteen times and showed remarkable consistency in the types of facultative and obligate anaerobes present in his gut. The anaerobic results obtained in the present study are similar to those found in "A Study of Bacterial Flora of the Alimentary Tract of Chimpanzees", AF29(600)-4124⁽¹⁾. Table 17 shows the relative predominance of all cultures isolated during these studies as well as those isolated during AF29(600)-4555⁽²⁾. The following types, FA8, FA18, FA1, FA3, and FA17 predominate on the basic study as well as on this study. CN1, FA15, FA10 and GD3 are predominating strains on this study and the difference in these predominating organisms as well as the marked difference from those cultures isolated during AF29(600)-4555 are probably "diet dependent". "Diet dependency" includes basic nutrients supplied, length of time on particular diet, type of diet preceding present diet, and medications. Table 18 shows the predominating anaerobic cultures isolated from the chimpanzee handlers, and the predominating anaerobes isolated under Contracts NASw-738⁽³⁷⁾ and AF33(615)-1814⁽³⁹⁾. The number of cultures from the handlers is not large enough to allow valid comparisons to be made. The tiny anaerobes which have been isolated repeatedly from the top dilutions of chimpanzee fecal samples have not been identified. We have been unable to maintain these strict anaerobes in pure culture, and for this reason biochemical identification was impossible. We have used PPLO media with serum fraction as well as a filtrate of other fecal organisms without successful maintenance of pure culture. The classification of the nonsporulating anaerobic bacteria is exceedingly complex and different authors often depend on a single characteristic for identification. For this reason the artificial grouping set up by Gall et al⁽³⁷⁾ has been used to separate the anaerobes. This grouping is based on both morphology and biochemical reactions as shown on Table 19. This classification uses fermentation as one of the keys since most anaerobes grow satisfactorily in the ordinary peptone sugar-water media. The most important fermentable substances are glucose, maltose, lactose, and sucrose and strongly saccharolytic species ferment all of these sugars. Those species whose activity is less may ferment glucose or glucose or maltose. Organisms which do not ferment glucose do not attack any of the sugars. Another interesting point is that lactose fermenting anaerobes are rarely truly proteolytic. "All members of the genera Streptococcus, Pediococcus, Microbacterium, a large number of lactobacilli, certain bacilli, and Rhizopus species ferment glucose predominantly to lactic acid with formation of trace amounts of volatile acids, ethanol, fumarate and carbon dioxide." In addition, "The classic procedures of microbiology provide rudimentary information on the fermentation of protein. Observations of acid production, (indicator added, change in pH, gas formation and rate and amount of growth furnish a) a means of surveying the substrates fermented and comparing the range of substrate availability among strains, species, and genera and b) a guide to products formed." (43) In the reading of litmus milk, which is one of the primary identification points, one should remember that highly saccharolytic organisms attack the lactose so vigorously that a stormy clot results, and acid causes the casein to coagulate. Curding is also the result of the growth of some non-lactose fermenting organisms due to the fact that these organisms secret a rennin-like enzyme capable of hydrolyzing casein to soluble caseinogen which then reacts with the soluble calcium salts present in the milk to form a percipitate of calcium caseinogenate which may give a false reading. Anaerobic cultures have been separated on the basis of morphology by many authors. The genus Fusiformis contains gram negative nonsporulating bacilli which are obligate anaerobes and may be pathogenic in some instances. Some authors divide the gram negative anaerobic rods into two groups; i.e., bacteroides which are rods with rounded ends and Fusobacteria which are rods with pointed ends. The anaerobic cocci are a heterogeneous group of organisms for which no satisfactory classification or nomenclature has been devised. Many authors divide them into two general groups. One group is the anaerobic streptococci which are gram positive, appear in long or short chains and are either strict anaerobes or microaerophylic in their oxygen requirement. This group would be found among the following numbers: FN2, FN3, FN4. The obligately anaerobic streptococcus were placed by Bergy⁽⁴²⁾ in the genus Peptostreptococcus and include thirteen species. Attempts to demonstrate regularly the commonly defined species from the upper respiratory and intestinal tract have not been very successful because of technique difficulties of culture. The second group are anaerobic micrococci of varying size and shape typically appearing in masses, although pairs and tetrads have been observed. They may be either gram positive or gram negative and do not like simple media. They would correspond to the following F and C numbers: FA13, CT1. The possible taxonomic position of the FA types is of interest and the following type cultures are probably members of the Lactobacilliaceae since they produce large amounts of lactic acid: FA2, FA4, FA5, FA11, and FA16. In addition, FA4, FA5, and FA11 may belong in this category since they are also strong acid formers. It is possible that the function in the body of this group of organisms is rather similar. This role would include the metabolism of carbohydrates with the production of lactic acid, lipase, and in certain instances the production of B vitamins. It is possible that FA2 does not really belong in this group since its morphology is more characteristic of the Eubacterium or Catenabacterium group and its function may be carbohydrate metabolism, lipase and certain B vitamin production. The next group of organisms are the deaminating and decarboxylating group of fecal anaerobes. This group of organisms has been designated physiologically since its morphology is quite diverse and it includes FA1, FA9, FA10, FA12, FA7, and FA8. These organisms may belong to the Eubacterium or Catenabacterium group and their role in the body includes
deamination, decarboxylation, the formation of lactic acids from carbohydrates, and the production of vitamin B12, pantothenic acid and folic acid. FA8 is a very tiny organism which may belong to the Dialister group. It is physiologically active producing lactic acid from glucose and converting amino acids to ammonia. It can also decarboxylate histidine and tyrosine, and produce B_{12} and pantothenic and folic acid. Other organisms possess less homogeneous physiological characteristics. However, FA13 appears to be a veillonella and produces B_{12} , riboflavin, and folic acid. FA3 appears to be a Fusobacterium and produces small amounts of lactic acid from glucose and carries out some deamination, but is active in decarboxylation of the four amino acids tested. FA3 also produces vitamin B_{12} and is the only organism in the sixteen type cultures that produces indol. FA15, probably another Fusobacteria, produces large amounts of lactic acid as well as vitamin B_{12} and pantothenic acid. FA14 appears to be in a category by itself because it is capable of fixing nitrogen as well as producing hydrogen and has an extremely wide temperature growth range. FA6 produces small amounts of lactic acid from glucose and has no decarboxylating or deaminating activity. FA18, GD2, CN1 and FA6 demonstrated positive lipolytic activity as noted in Table 20. In addition, the same cultures demonstrated specific lipolytic activity when incubated with varying shorter chain fatty acids (see Table 21). All of the <u>in vitro</u> work performed on NASw-738⁽³⁷⁾ as well as the work done under the present contract indicate the breadth of the physiological function of the fecal anaerobes as well as highlight the enormity of the task of determining their function in the gut. The complex ecological role of the many different microorganisms living in the intestine is difficult to simulate and study. One approach is to determine the fundamental physiological activities of these predominant organisms in an attempt to chemically resolve their function in the body. Microorganisms may compete with the body for nutrients, produce essential nutrients, or precursors of human nutrients, or autolyze products which are toxic to the animal. Major sources of nutritional energy for bacterial metabolism are amino acids and peptides. The environment in the colon is well suited for microbial fermentation of these substrates. A study of the physiological pathways of amino acids and peptide metabolism was undertaken in order to learn more about potential byproducts of bacterial metabolism (37). Bacterial growth involves protein synthesis. Supplies of nitrogen, carbon, sulfur are essential to this process. Even highly proteolytic bacteria will not grow when native proteins are the sole source of nitrogen. Proteins used may be dehydrolyzed proteolyses, peptones, peptides and amino acids produced by bacterial hydrolyses. The ability of selected fecal anaerobes to produce lactic acid, produce or utilize vitamins, deaminate or decarboxylate amino acids as described in NAS-738⁽³⁷⁾ indicates the wide range of physiological activities of the anaerobic intestinal microflora. In addition to the above reactions, proteins and lipids are broken down into smaller units and synthesis of complex substances from these basic units may occur. Lypolysis contributes a number of intermediates which are involved in the citric acid cycle, either directly or as accessory compounds. Since biological lipids are very complex substances, several enzymes such as lipases, esterases, phosphalidases act together to accomplish hydrolysis. Lipases range in specificity of action, as with peptidases from ability to split long chain lipids, to action on short chain fatty acids. Lipo-amino acid complexes may be direct precursors of protein or in equilibrium with the precursors. Those cultures predominating in the current study were selected for a study of their lipolytic activity. Bacto Spirit Blue Agar was prepared and the requisite amount of Bacto Lipase Reagent was added as directed (44). Conventionally, this medium is used in the form of plates or slants on which the test organism is streaked. Positive lipase production is indicated by formation of a dark blue precipitate under the colonies. In the investigations reported in NASw-738, 'Study of the Predominating Normal Fecal Flora of Man' (37) it was found that better results were obtained when the medium was distributed in deep butts. The melted and cooled medium was inoculated with 0.1 ml of a culture of the test anaerobe. The incubated tubes were compared on successive days to the lipase controls seeded with lipase enzyme and to the uninoculated incubated controls. All determinations were in triplicate. Negative test vials showed no color change, while the positive cultures were blue as compared with the uninoculated control; though deep color was not developed. Three strong negatives were noted, a yellow color being produced in the growth column. This yellow color had been noted in the tests run with the anaerobe type cultures from humans. It may be the effect of pH changes upon the medium or might be indicative of synthetic activity. Further study would be required to explain this phenomenon. To determine specific enzyme activity against certain fatty acids and esters, additional work utilizing Bacto Spirit Blue Agar was performed. This work is shown in Table 20. Fatty acids and esters selected on the basis of increasing length of carbon chain were added to Bacto Spirit Blue Agar at a concentration of 1%. While a blue color develops in the medium as a result of addition of the fatty acid, the reaction can be recognized by comparison with the uninoculated controls. A yellow color was observed, as in the series with added Bacto Lipase Reagent, and this color change was produced by the same microorganisms as shown in Table 21. ## SECTION IV # CONCLUSIONS AND RECOMMENDATIONS #### CONCLUSIONS - 1. A remarkable similarity exists in primates between the basic aerobic flora of man, chimpanzees, and certain species of monkeys. - 2. Differences in species pathogenicity has been demonstrated in the literature (particularly in the Shigella sp.). - 3. Carrier-states exist in the chimpanzee and various stresses such as diet, confinement, transportation, seasonal change, as well as pregnancy and lactatation may cause a lowering of resistance resulting in illness. - 4. The anaerobic flora of the chimpanzee can vary widely in its degree of anaerobiosis. The different sampling periods showed the percentage of obligate anaerobes to vary between 26% and 67%. - 5. The types of anaerobes predominating in the chimpanzee include certain strains which have not been identified in man. - 6. The anaerobes isolated from the lower dilutions of the fecal samples did not differ significantly either in type or degree of anaerobiosis from those anaerobes isolated in the top three dilutions. - 7. Medications such as isoniazid and Delvix (R) influenced the types of anaerobes recovered from the feces. - 8. Identification of the lactobacilli isolated from the fecal cultures of the chimpanzees were different than those isolated from the handlers. This is assumed to be of nutritional rather than phylogenetic origin. - 9. The presence of microorganisms resembling M. tuberculosis in the feces of both animals and handlers might indicate transference. - 10. Results of the tests for lipase production indicate that some of the fecal anaerobes, both obligate and facultative, are active in lipid metabolism. #### RECOMMENDATIONS 1. The physiological studies begun under this contract should be extended in order to more fully delineate the function of those anaerobes predominating in the fecal flora of the chimpanzee. - 2. All personnel handling the chimpanzees and all chimpanzees in the colony should be screened repeatedly for the presence of Mycobacterium tuberculosis. - 3. Frequent screening of fecal cultures for the presence of potentially pathogenic members of the Enterobacteriaceae should be conducted to eliminate insofar as is possible the "carrier" state. - 4. The fatty acid metabolism of the fecal anaerobes should be explored by biochemical and physiological means to obtain information concerning lipid catabolism and anabolism. - 5. Implantation of selected fecal anaerobes (in gelatin capsules) into the colon of chimpanzees could be attempted to see if in vivo effects of the change of flora could be detected. - 6. Those type cultures found only in the chimpanzee should be studied for antibiotic production with emphasis placed on their ability to inhibit potentially pathogenic members of the Enterobacteriaceae. # TABLE 1. ANIMALS SAMPLED (BRIEF HISTORY) | Animal
Name | Holloman
Designation | RAC
Designation | Group | History | |----------------|-------------------------|--------------------|-------|-----------------------------| | Marty | 196 | CF-100 | 1 | - | | Susan | 202 | CF-101 | • | | | Guy | 197 | CF-102 | | | | Janet | 187 | CF-103 | | | | Gigi | 155 | CF-104 | | | | Lennie | 199 | CF-105 | | | | Linus | 217 | CF-106 | | · | | Rosie | 232 | CF-107 | | | | Норе | 136 | CF-108 | | | | Pop | 218 | CF-109 | | | | Van | 149 | CF-110 | | | | Clayton | 130 | CF-111 | | | | Shirley | 116 | CF-112 | | | | Rufe | 114 | CF-113 | | | | Zazsa | 145 | CF-114 | | : | | Roy | 101 | CF-115 | | ; | | Billy | 85 | CF-116 | | | | Howard | 157 | CF-117 | | | | Annie | 167 | CF-118 | | | | Possum | 169 | CF-120 | | ı | | Freda | 224 | CF-119 | 2 | Isolation unit | | Dearl | 226 | CF-121 | | | | Andy | 225 | CF-122 | | , | | Richie | 231 | CF-123 | | | | Brian | 229 | CF-124 | | | | Mimi | 126 | CF-141 | 3 | Returned from Wisconsin, on | | Marc | 172 | CF-125 | | Delvex | | Denise | 145 | CF-126 | | | | Sonia | 122 | CF-142 | İ | | | Randy | 170 | CF-143 | | | | Manuel | 139 | CF-146 | | | | Elbys | 117 | CF-145 | | | | Phil | 174 | CF-147 | | | | Donald | 198 | CF-148 | İ |
Shorty	238	CF-140	4	From Phoenix		Meredith	235	CF-135				Glory	237	CF-138				Floyd	239	CF-134				Mel	236	CF-137				Bob	233	CF-139									TABLE 1. -- Continued	Animal Name	Holloman Designation	RAC Designation	Group	History		--	--	--	-------	---		Brian Richie Dearl Andy	229 231 226 225	CF-129 CF-131 CF-132 CF-130	5	TB isolation from September		Jerry Laveeta Clay Gromic	242 190 246 234	CF-144 CF-149 CF-133 CF-136	6	Received Holloman February 12		Chester Tina	245 244	CF-128 CF-127	7	Isolation 1 month or less in country		Kay Ike May Henry	258 255 257 256	CF-158 CF-159 CF-160 CF-161	8	From Tulane. In isolation		Francis Jaylen	259 260	CF-171 CF-172	9	CDC, Asiatic, Phoenix 3 months. Came into colony May 12.		Walter	169	CF-168	10	USC. Isolation.		Randy Red Marc Denise Mimi Sonia	170 158 172 145 126 122	CF-162 CF-163 CF-166 CF-167 CF-169 CF-174	11	Previously in group receiving Delvex.		Meredith Bab Glory Shorty Mel Floyd	235 233 237 238 236 239	CF-152 CF-153 CF-155 CF-156 CF-157 CF-170	12	Previously in Phoenix group.		Chester Gromic Clay Laveeta Jerry	245 234 246 190 243	CF-150 CF-151 CF-154 CF-164 CF-165	13	Previously in isolation group.		Herbie	194	CF-173	14	Holloman Colony.		Snoopy	272	C-14A	15	Arrived from CDC 7/22/65 Housed in isolation (TB input) Diet: pellets, fruit, isoniazid (no cocktail)	TABLE 1. -- Continued	Animal Name	Holloman Designation	RAC Designation	Group	History		--	--	---	-------	--		Penny Kenny	275 276	C-6A C-7A	16	Arrived from University of Maryland 9/16/65. Housed in isolation. Normal diet of pellets, fruit and cocktail		Lorreine Lady Bird	273 274	C-10A C-11A	17	Arrived from CDC 8/13/65. Housed in isolation. Normal diet of pellets, fruit and cocktail.		Dearl Richie Andy Brian	226 231 225 229	C-8A C-9A C-12A C-13A	18	In colony at least 6 months. TB animals housed in isolation. Pellets, fruit, isoniazid. (no cocktail)		Winny Buddha Lucy	262 263 264	C-23A C-24A C-25A	19	In colony at least 6 months. Nutrition animals. Housed in front rooms 7/9 to 8/4. Fed Purina pellets only. 8/4 to 8/13 fed WARF pellets 8/13 to present Purina pellets only.		Sara Dick	261 110	C-2 A C-15 A	20	In colony at least 6 months. Used in comparative psychology program with deprivation of normal diet and Ciba pellets supplementation periodically.		Betty Cary Oscar	203 183 211	C-1A C-18A C-19A	21	In colony at least 6 months. Normal diet of pellets, fruit and cocktail up until 9/9/65 then placed on WARF pellets only until 9/27 then switched back to regular diet.		Fay Angie Pepe Karen Mandy Debbie	254 162 252 177 208 204	C-3A, 22A C-4A C-5A, 21A C-16A C-17A C-20A	22	In colony at least 6 months. Normal diet of pellets, fruit and cocktail	# TABLE 1. -- Concluded # **HANDLERS**	Man 1	L. R. Boone		--------	-------------		Man 2	B. J. Teal		Man 3	R. H. Vegl		Man 4	A. Taylor		Man 5	C. Barton		Man 6	L.R. Boone		Man 7	B.J. Teal		Man 8	R. H. Vegl		Man 9	A. Taylor		Man 10	C. Barton	TABLE 2. AEROBIC MICROORGANISMS FOUND IN NORMAL HUMAN FECES WITH COMPARISON TO THOSE FOUND IN THE CHIMPANZEE			HUMAN		CHIMPANZ	ANZEE		----------------------------	-----------------	--------------------------	--	-------------------	----------------			Literature (36)	NASw-738 ⁽³⁷⁾	AF33(615)-1814(39) AF33(615)-1748(38)	AF29(600)-4124(1)	AF29(600)-4991		GRAM + COCCI							Coagulase negative staph	+	+	<u>.</u>	+	+		Coagulase positive staph	+	+	+	+	. +		Str. mitis	+	+	+	+	+		Str. salivarius	+	+	+	+	+		Enterococci	+	+	+	+	+		Str. pyogenes (BCFG)	+		+	+	+		GRAM + BACILLI							Lactobacilli	+	+	+	+	+		Corynebacteria	+	+	+	+	+		Mycobacteria	+	**	**	**	+		Actinomyces bifidus	+		+				GRAM - BACILLI							Undifferentiated coliforms	+	+	+	+	+		E. coli	+	+	+	+	+		E. coli "Intermediates"	+ -	+	+	+	+		Proteus sp.	+ +	++	+ +	+ +	+ -		Pseudomonas aeruginosa	+	+	+	- +	⊦ +		Alcaligenes faecalis	+		+	+	- +		Vibrio alcaligenes	+	+	+	+	+		Serrația			+	+	+		Mima polymorpha	+			+	+		Aerobacter C and B			+	+	+		Ouropacier			+		+		PPLO	+	+	+	+	+		FUNGI							Candida albicans	+		+	+	+		Other candidas	+		+	+	+								** Not tested for	Mixed Strain																	-------------------------	-------	------	------	-------	------	-------	-------	-------	--------	----------	-----------	-------	-------	--------	-------		Group G																	Species Unidentified																	Pyogenic Group	×					×							3				Veridans Group	×		×	×						×		×		×	×		Equinus																	Lactic Group		,		×											×		Type																	Human C																	aitiM	×	x		×		4		x		×	×	×		×	×		Bovis																	Salivarius	Х		X	X				×		×	×	×	×	×	×		Non-Types	×		×	×		×	×	×		×	×			×			Enterococci		×	×	×	×	×		×	×	X			X	×	×		тәбший ЭАЯ	C-1A	C-2A	C-3A	C-4A	C-5A	C-6A	C-7A	C-8A	C-9A	C-104	C-11A	C-12A	C-13A	C-14A	C-15A		.oV nsmolloH	203	261	254	162	252	276	275	226	231	273	274	225	229	272	110		Animal	Betty	Sara	Fay	Angie	Pepe	Penny	Kenny	Dearl	Richie	Lorreine	Lady Bird	Andy	Brian	Snoopy	Dick													 	 			-------------------------	-------	-------	-------	-------	--------	-------	-------	-------	--------	-------	------	------	---		Mixed Strain													_		9 dnox9															Species Unidentified															Pyogenic Group		×													Veridans Group					×			×							Edninus															Lactic Group		×			×	×	×		×	×					Type															Human C															Mitte		×	×	×	×			×	×	x					Bovis															Salivarius						×	×	×	×	×					Non-Types		×	×	×	×	×	×	×	×	x					Enterococci	×	×	×	×	×				×						дефитрет	C-16A	C-17A	C-18A	C-19A	C-20A	C-21A	C-22A	C-23A	C-24A	C-25A					Holloman No.	177	208	183	211	204	252	254	262	263	264					Animal	Karen	Mandy	Cary	Oscar	Debbie	Рере	Fay	Winny	Buddha	Lucy					Mixed Strain									1									-------------------------	-------	-------	-----	-------	------	--------	-------	-------	------	-----	-----	---------	---------	------	-------	--------------------------		Group G									-				1	-+				Species Unidentified																		Pyogenic Group																		Veridans Group																		Equinus																		Lactic Group																		Type				Ŋ							ပ							Human C																		Mitis	×	×	×	×	×	X	×	×	×	×	×	×	×		×			Bovis																		Salivarius	×										×							səd&T-noN	*		*X	*X	*	*X			*x	*x	*		*×					Enterococci	×	×	×	×		×	×	×	×	×	×	×	×	×	×			ВАС Митрет	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	genic		oN namolioH	196	202	197	187	155	199	217	232	136	218	149	130	116	11.4	143	y Patho		Animal	Marty	Susan	Guy	Janet	Gigi	Lennie	Linus	Rosie	Hope	Pop	Van	Clavton	Shirlev	Rufe	Zazsa	* Potentially Pathogenic	32 Table 3 -- Continued	1							1									-	1		---	-------------------------	-----	-------	--------	-------	-------	--------	-------	------	--------	-------	------	--------	------	---------	-------	---			Mixed Strain						X	X		X										9 quord																			Species Unidentified																			Pyogenic Group																			Veridans Group																			Equinus																			Lactic Group																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
	Type				•	ລ						.=								Human C																			Mitte	×	×	×	×	×	×	×	×	×	×	×	×			×				Bovis											·				_				Salivarius		×		×	×	×	×							X					Non-Types	*	*	*	×	*×	*x	**	*x		*X	X*	x*	*X						Enterococci	×	×	×	×	×	×	×		×	×	×	×	×	×	×				тәбтий ЭАЯ	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129				Holloman No.	101	85	157	167	224	169	226	225	231	229	192	145	244	245	229	:			Animal	Roy	Billy	Howard	Annie	Freda	Possum	Dear1	Andv	Richie	Brian	Marc	Denise	Tina	Chester	Brian		* Potentially Pathogenic Table 3 -- Continued	Mixed Strain																		----------------------------------	------	--------	-------	------	-------	----------	--------	-----	-------	-----	--------	------	-------	-------	--------	----------		9 dnox9																		Species Uniden ti fied																		Pyogenic Group																		Veridans Group																		Equinus																		Lactic Group										•								Type										·								Human C																		Mitie	×	×	×		×		X	X	X	×	×	×	×	×	×			Bovis																		Salivarius			×	×	×	×	X	X	X	X	×				×			səd&L-uoN				*X	*X		*X					*X	*X	*x	_			Enterococci		×	×	×	×	×	×	X			×	×	×	×				тәфший ОАЯ	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144			Holloman No.	225	231	226	246	239	235	234	236	237	233	238	126	122	170	243	X		Animal	Andy	Richie	Dearl	Clay	Floyd	Meredith	Gromic	[e]	Glorv	Bob	Shorty	Mimi	Sonia	Randv	hudo].		* Potentially Pathogenic Table 3 -- Continued	Mixed Strain																	-------------------------	-------	--------	------	--------	---------	---------	--------	----------	-----	------	-------	--------	-----	-----	-----		9 dnox9													×				Species Unidentified																	Pyogenic Group																	Veridans Group																	Equinus																	Lactic Group																	Type																	Human C																	Mitte	×	×	×	×	×	×	×				×	×	×	×	×		Bovis					•												Salivarius						×		×	×	×		×	×				Non-Types	*X	*×	**			*x	*X	*X	*X	*X	*	*	*×	*x	*×		Enterococci	×	×	×	×	×	×	×				×	×	×		×		ВАС Ичтрет	145	146	147	148	149	150	121	152	153	154	155	156	157	158	159		Holloman No.	117	139	174	198	190	245	234	235	233	246	237	238	236	258	255		Animal	Elbys	Manuel	Phil	Donald	Laveeta	Chester	Gromic	Meredith	Bob	Clay	Glorv	Shortv	Мел	Kay	Ike	Potentially Pathogenic, Presumably Group F Table 3 -- Continued	Mixed Strain																		---------------------------------	-----	-------	-------	-----	---------	-------	------	--------	--------	------	-------	---------	---------	--------	--------	-------		9 dnord																		Species Uniden ü fied																		Pyogenic Group																		Veridans Group																		Equinus																		Lactic Group																		Type																		Human C																		Mitis			X	X	×	×	X	X		×	×				×			Bovis			ų.															Salivarius		×			· ×	×					×	×	×					Non-Types			*×	*X			×	*×	**	*	*×	*	_					Enterococci	×	×	×	×	×	×	×	×	×		×	×		×	×			тәфшиМ ОАЯ	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	712		Holloman No.	257	256	170	158	190	243	172	145	169	126	239	259	260	194	1 99	777		Animal	May	Henry	Randy	Red	Laveeta	Jerry	Marc	Denise	Walter	Mimi	Floyd	Francis	.Iavlen	Horbio	Gorio.	Sonia	* Potentially Pathogenic, Presumably Group F Table 3 -- Continued													 				-------------------------	----------	----------	----------	-----------	-----------	---	-----------	-----------	-----------	-----------	-----------	-----------	-------------------	-------------		Mixed Strain																ට quorට									×							Species Unidentified																Pyogenic Group			•								×					Veridans Group			×								×					Equinus									×							Lactic Group																Type												ပ				O nsmuH																aitiM	×	×	×		×		X	×		X	X	×	×			Bovis									×			X				Salivarius			×	×	×	,	×	×	×	X	×	×	X			Non-Types	*×				×		*x	*×	x		×		*x			Enterococci					×			•		×				renici		ВАС Ишрег	CF122	CF130	C-12A	C-6	CF-118		C-22	C-35	C-43	C-61	C-1A	C-24	C-46	e pathor		Holloman No.	225	225		167	167		203	203	203	203		85	85	possible		Animal	Andy (c)	Andy (c)	Andy (c)	Annie (a)	Annie (c)		Betty (a)	Betty (a)	Betty (a)	Betty (a)	Betty (c)	Billy (a)	Billy (a) 85 C-46	* Indicates	(a) RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 (c) RAC 2544 (Quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 Table 3 -- Continued		1					 										-------------------------	----------	----------	---	---------	---------	-----------	-----------	-----------	---	----------	----------	----------	----------	---		Mixed Strain																9 quotd												×				Species Unidentified																Pyogenic Group														į		Veridans Group									•							Equinus												×				Lactic Group																Type										Ţ		ပ				Human C																Mitis	×	X		×		×	X			X	X		×			Bovis												X				Salivarius	×	×		×	×			×		×		X				sədvT-noN	*×	*×			*×	*×					*×	×	×			Enterococci		×	i			 ×	l	1	ł		×	×	×	l		тэфший ЭАЯ	C-69	CF-116		CF139	CF153	CF124	CF129	C-13A		C-25	C-40	C-45	C-18A			Holloman No.	85	85		233		229				183		183	183			Animal	ВіШу (а)	ВіШу (с)		Bob (c)	Bob (c)	Brian (c)	Brfan (c)	Brian (c)		Cary (a)	Cary (a)	Carv (a)	Carv (c)		Indicates possible pathogenicity RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 RAC 2544 (Quarterly Reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 (a) Table 3 -- Continued	_	Mixed Strain					×									---	-------------------------	--------------------	---------	----------	----------	-----------	-----------	-----------	--------	--------	--------	-------------	----------------------------------			Group G															Species Unidentified															Pyogenic Group															Veridans Group									×						Equinus					·										Lactic Group									×						Type								D		Ġ					Э пвтиН														L	Mitte		X			×	X	X	×	X	×	×	İ			Bovis										×	×				suivarius •	×	×	×	×	×	×	×	×		×				_	Non-Types		*×	*×	*×	*×		×		X		*×	Ţ.			Enterococci	×	×	×		×	×	×	×	X		×	genic			тэфтий ЭАЯ	CF128	CF150	CF133	CF154	CF121	CF132	C-8A	C-21	C-20A	CW5	CW17	le path			Holloman No.	245		246		226			204		145	145	disaoq			Animal	ı _r (c)	r (c)	3)	(6	(c)	(c)	(c)	(a)	(c)	(G)	(2)	Indicates possible pathogenicity			Anti	Chester	Chester	Clay (c)	Clay (c)	Dearl (c)	Dearl (c)	Dearl (c)	Debbie	Debbie	Deníse	Denise (b)	¥.	RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 ල ල ල Table 3 -- Continued						-													-------------------------	-----------------------	------------	------------	------------	--------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------------------------------		Mixed Strain		×																9 dnox9				-														Species Unidentified																		Pyogenic Group										
					Veridans Group																		Equinus											•							Lactic Group											·					ccus		Type				၁	ტ			·								streptococcus		Human C																В		Mitis	×	×	X	×	×	×	×	×	X	×	×	×	×		×	Group		Bovis						×								×	×	*		Salivarius	×	×		×		×	×	×		×			×	×	×			səd&L-uoN			*×	×		*×	*×	*×	*×	*×	*×	*×	*×		*×			Enterococci	×	×	×	×	×	×	×		×	×	×	X				ogenic		тэфтим ЭАЯ	CW28	CW48	CW49	CW63	CW76	CW90	CW102	CW120	CW122	CW134	CW146	CW161	CW169	C-4	C-12	le path		Holloman No.	145	145			145	145		145		145	145		145	145	145	possib		Animal	Denise ^(b)	Denise (b)	Denise (b)	Denise (b)	** Denise	Denise (b) (a)	Denise (a)	* Indicates possible pathogenicity	RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4124, Dec. 1964 RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 <u>B</u> Table 3 -- Continued				 											_			-------------------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------------------------------		Mixed Strain					×	×											9 dnox9																	Species Unidentified																	Pyogenic Group																	Veridans Group																	Equinus																	Lactic Group																	Type										-							Human C			•											·			alitik	×	×	×	×	×	X			×	×	×	×	×	×			Bovis					X			×									Salivarius			×	X	×	X			×			×	×				Non-Types	*×	*×		×			×	*×		*×	*×		*×		ity		Enterococci	×	X		×	×			×	×	X	×	×	×	×	ogenic		тәфший ОАЯ	CF126	CF167	CW11	CW21	CW32	CW42	CW54	CW67	CW77	CW94	CW100	CW114	CW130	CW141	le path		Holloman No.	145	145	198	198								198	198	198	dissoq		Animal	Denise (c)	Denise (c)	Donald (b) * Indicates possible pathogenicity	RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 ලව Table 3 -- Continued						 					$-\tau$			一丁	\neg		-------------------------	------------	------------	------------	------------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	--------		Mixed Strain																Group G																Species Unidentified																Pyogenic Group																Veridans Group																enniupA																Lactic Group																Type					G							Ö				Нитап С					X											Mitis	×	×	×	×	×	×	X		×	×	×	×	×			Bovis																Salivarius	×				×	×		×		×	×		×	×		səqvT-noV	*×				*×	X		*×	×	*×				*×		Enterococci	×	×		X				×	×	×	×	×		×		ВАС Ичтрет	CW150	CW159	CW170	CF148	CW9	CW24	CW36	CW44	CW59	CW72	CW83	CW95	CW107	CW115		Holloman No.	198	198		198	117	117		117	117		į	117	117	117		Animal	Donald (b)	Donald (b)	Donald (b)	Donald (c)	Elbys (b)	Elbvs (b)	Elbys (b)	Elbys (b)	Elbys (b)	Elbys (b)	Elbys (b)	Elbvs (b)	Elbys (b)	(b)	ndicates possible paurogements of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965. RAC 1787-5FR, "The Influence of Diet on the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 gAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 වල Table 3 -- Continued	Mixed Strain														-------------------------	-----------	-----------	-----------	-----------	-----------	-----------	---------	---------	-----------	-----------	----------	-----------------------------		9 dnoz9														Species Unidentified														Pyogenic Group														Quord sasbirsV					•		×							Equinus														Lactic Group								×						Type														Human C														Mitis	×	×	X	×	×	×			X	×		×		Bovis						-								Salivarius	×				×		X	X	X	×	×			səd&L-uoN	*×	*×	*X	*x	* x	*×	×	×	*×	*×	*×	*×		Enterococci		×	×	×		×	×		, ×	X	×			. тәфтим ОАЯ	CW129	CW139	CW151	CW160	CW171	CF145	C-3A	C-22A	CF134	CF170	C-28	CF104		Holloman No.	117	117	117	117	117	117	254	254	239		155	155		* Animal	Elbys (b)	Elbys (b)	Elbys (b)	Elbys (b)	Elbys (b)	Elbys (c)	Fay (c)	Fay (c)	Floyd (c)	Floyd (c)	Gigi (a)	Gigi (c) 155 CF104 X*	(a) RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 (b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 Table 3 -- Continued							 Y	т						1	1		-------------------------	---------	-----------	---------------	--------	--------	---------	---------	---------	---------	---	------------	--------	---	----------------------------------		Mixed Strain																Group G							×									Species Unidentified																Pyogenic Group																Veridans Group																Eduing										:						Lactic Group																Type																Э пвтиН																Mitis	×	X		×	×		×	X	×			×				Bovis							X				×					Salivarius	×			×		×	×									səqyT-noV		*×		*×	*×	*×		*×	*×		*×	*×		1		Enterococci		×	1	×	ł			×		1		×		genici		КАС Митрет	CF138	CF155	- 	CF136	CF151	C-31	C-47	C-58	CF102		C-10	CF117		o natho		Holloman No.	237			234		197					157			Tadiostes nossible nathogenicity		lar	(c)	(o)		9	(0)						(a)	(a)		1 20400:		Animal	Glory (Glory (c)		Gromic	Gromic	Guv (a)	Guy (a)	Guy (a)	Guy (a)		Howard (a)	Howard		*	(a) RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 Table 3 -- Continued						 		 		 						-------------------------	-----------	-----------	-----------	-----------	-----------	-----------	-------------	-------------	------------	------------	------------	------------	--		Mixed Strain													1964		9 quord		×							×	×			່ວຸ່		Species Unidentified													(600)-4124, De AF29(600)-4991		Pyogenic Group													29(600). AF29		Veridans Group													," AF2		Equinus									×				anzees Chimpar		Lactic Group													Tract of Chimpanzees," AF29(600)-4124, Population of Chimpanzees," AF29(600)-4		9d\T.				Ŋ		,			Ą				ract of Oppulati		Human C															Mitis	::	×	×	×	×	×	×	. ×	×	×	×	×	Alime al Bact		Bovis		×								×			rerial Flora of the Alimentary "Study of the Fecal Bacterial		Salivarius	×	×			×	×		×	×	×	×		l Flora dy of t		səqvT-noN	*×			×						×	*×	*×	ity cteria] ''Stu		Enterococci			×			×	×	×	×			×	ogenic 7 of Ba eports		дәфтитрет	C-30	C-48	C-59	CF103	CF144	CF165	CF149	CF164	C-33	C-52	C-56	CE-105	ates possible pathogenicit 1095-5FR, "Study of Bact 2544 (quarterly reports),		Holloman No.	187	187			243	243	190		199		199	199	possik 5-5FR, 4 (quar		Animal	Janet (a)	Janet (a)	Janet (a)	Janet (c)	Jerry (c)	Jerry (c)	Laveeta (c)	Laveeta (c)	Lennie (a)	Lennie (a)	Lennie (a)	Lennie (c)	* Indicates possible pathogenicity (a) RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial	(c)	<u> </u>			— т	Т	T				$-\tau$		Ŧ	$\overline{}$			\neg		-------------------------	------------	-------	-----	------------	------------	------------	------------	--------------	------------	------------	------------	---------------	------------	------------	----------------------------		Mixed Strain																	Group G																																																																																																																																																																																																																																																																																																																																																																																															
Species Unidentified																	Pyogenic Group																	Veridans Group																	Equinus																	Lactic Group																	Lype																	Human C																	Aitin	×	×				×	×			×	×	×		×	×		Bovis					X				X	•		×					Salivarius	×			×		X	X				×		×				Non-Types				*×	X		*×	x					*×	*×			Enterococci	×	×		×	X				×	×	×	×	×	×	×		ТАС Иштрет	C-65	CF106		CW12	CW23	CW34	CW43	CW58	CW65	CW84	CW96	CW108	CW118	CW128	CW140		oN namolioH	217	217		139	139								139	139	139		Animal	Linnus (a)	(c)		Manuel (b)	Manuel (b)	Manuel (b)	Manuel (b)	** Manuel	Manuel (b) 139 CW140 X	RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF23(000)-4124, Dec. 1304 RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 <u>@</u>@ Table 3 -- Continued	. [T	$\neg \tau$	$\neg \neg$	\Box		T			\Box			T	\top	\neg			-------	-------------------------	------------	------------	-------------	-------------	--------------	----------	----------	----------	----------	----------	------------	----------	----------	----------	----------	---			Mixed Strain										×						1965			9 dnox9						×										i, May 991			Species Unidentified																0)-455{ (600)-4			Pyogenic Group																streptococcus Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 sterial Population of Chimpanzees," AF29(600)-4991			Veridans Group																ee," A			Equinus																impanz)himpan			Lactic Group																the Ch		זוחכת	Type							ບ				А		ပ			occus lora of opulati			Э пътиН						×										streptococcus Fecal Flora o terial Populat		2 2 2	Mitie	×	×	×	×		х	×	×	×		×	×	X	×		y ** Group B streptor of Diet on the Normal Fecal "Study of the Fecal Bacterial		-	Bovis							×		×							** Gro the No he Feca			Salivarius			×			×	×	×	×			×		×	×	** Diet on the ady of the F			Non-Types			*×	*×			×		*×			*×	*×	*×	*×	ity ce of D			Enterococci	×	<u>l i</u>	<u> </u>	×	ļ		×			×	×	×	×	×	×	ogenic nfluen ports)			дэфширет	CW152	CW163	CW173	CF146		CW2	CW14	CW26	CW37	CW56	CW61	CW73	CW88	CW98	CW111	ossible pathogenicit 5FR, "The Influence (quarterly reports),			Holloman No.	139	139	139	139		172	172	172	172	172	172	172	172	172	172	possib 7-5FR, 4 (quar			Animal	Manuel (b)	Manuel (b)	Manuel (b)	Manuel (c)	A Carrent of	Marc (b)	Marc (b)	Marc (b)	Marc (b)	Marc (b)	** Marc	Marc (b)	Marc (b)	Marc (b)	Marc (b)	* Indicates possible pathogenicity (b) RAC 1787-5FR, "The Influence of (c) RAC 2544 (quarterly reports), "St									-		 		 1	$\neg \neg$			----------------------------------	----------	----------	-----------	----------	----------	----------	----------	----------	-----------	-----------	---------	-------------	-------		Mixed Strain			Type B												Group G												×			Species Uniden t ified															Pyogenic Group															Veridans Group															Equinus															Lactic Group															Type			C			Ą				•					Human C															Aitia		×	×		×	×	×	×	×	×	×	×			Bovis						X									Salivarius	×	×		X		×				×	X	×			гэдүТ-поИ	*×	*×			*x		*×	*X		*×		*X	i i		Enterococci	×	×			×		X		X		×	×			дедширет	CW121	CW132	CW143	CW153	CW164	C-19	CF125	CF166	C-67	CF100	CF137	CF157			Holloman No.	172			172	172	172	172	172	196	196	236	236			Animal	Marc (b)	Marc (b)	Marc (b)	Marc (b)	Marc (b)	Marc (a)	Marc (c)	Marc (c)	Marty (a)	Marty (c)	Me1 (c)	(c)	TOTAL	Indicates possible pathogementy RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 RAC 1797-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 <u>a</u>@0 Table 3 -- Continued				 														-------------------------	--------------	--------------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	------------------------------------		Mixed Strain					×												9 guotd																	Species Unidentified																	Pyogenic Group																	Veridans Group																	Equinus																	Lactic Group																	Type																	Human C			×														Alitie				×	×	X		×	×	×	×	×	×	×			Bovis				×					×		×						Salivarius	×	×	×	×	×			×	×			×		×			Non-Types		*×	*×	*×		*×	-	*×	*×	*×		*×	*×	*×	itv		Enterococci	×		×		×		×	×	×	×	×	×	×	×	genic		тэфтий ЭАЯ	CF135	CF152	CW3	CW15	CW29	CW39	CW60	CW71	CW81	CW85	CW105	CW109	CW127	CW135	le natho		ноПотяп Ио.	235	235	126	126		126			126	126	126	126	126	126	possib		Animal	Meredith (c)	Meredith (c)	Mimi (b) * Indicates nossible nathogenicity	(b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29 (600)-4991 Table 3 -- Continued	The second secon						 							-				--	----------	----------	----------	----------	----------	----------	----------	---	----------	---------	-------------	---------	----------	----------	------------------------------------		Mixed Strain											×				100		9 dnox9																	Species Unidentified															1		Pyogenic Group																	Veridans Group															;		Equinus																	Lactic Group							X								į		Type	C		A														Human C																	Mitis		X	X	X	×				X	×	×	×					Bovis																	Salivarius		×					×			×	×		×				Non-Types		*×	*×	*×	*×		×		*×	×		×	*x	*×	Ä		Enterococci	×	X		×		×				×	>	×	×	×	genici		тәфший ОАЯ	CW145	CW158	CW167	CF141	CF169	C-5A	C-21A	i	CW8	CW22	20175	CW46	CW51	CW69	e patho																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
Holloman No.	126	126				252	252		174	1		174	174	174	ldissoc		Animal	Mimi (b)	Mimi (b)	Mimi (b)	Mimi (c)	Mimi (c)	Pepe (c)	Pene (c)		Phi1 (b)	(p) (p)	(Q) :: %	(a) [hd	Phil (b)	Phil (b)	* Indicates possible pathogenicity	* Indicates possible pathogenicity (b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 Table 3 -- Continued				I						•		,							-------------------------	--	--	--	--	--	-------------------	---	-----------------------	-------	--	--	--	---------	---------	---	------------------------------------		Mixed Strain																•		ච dnozච													·					Species Unidentified																		Pyogenic Group															-																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
	Veridans Group																		Equinus										×								Lactic Group																		Type																		O nsmuH																		aitiM	×	×	×	×		×	×		×	×	X		X	×				Bovis																		Salivarius	×		×	×	×	×	×	×	×	×			×					Non-Types			*×		*×	*×	*×	·	*×	*×	*×		*×	*×		T.		Enterococi	×	×		×		×	×	×			×		×	×		ogenic		дәфитрет	CW80	CW91	CW104	CW117	CW125	CW137	CW149	CW155	CW174	C-15	CF147		C-66	CF109		le nath		Holloman No.	174	l														nogain		Animal	(b)	Phi1 (b)	(b)	(b)	Phil (b)	Phil (b)	Phil (b)	Phil (b)	(b)	Phil (a)	(c) Phi1		Pop (a)	Pop (c)		* Indicates nossible nathogenicity			Holloman No. Enterococci Mon-Types Salivarius Human C Type Type Type Type Type Type Type Type	Holloman No. RAC Number RAC Number Mon-Types Mittis Human C Type Type Human C Type Mittis Acridans Group Mittis Weridans Group Type Weridans Group Type Unidentified Group Group	Holloman No. Coup Geroup Geroup	Holloman Mo. CW CW CW RAC Number CW CW CW RAC Number CW C	CW12 CW2 CW2 CW2 CW2 CW2 CW2 CW3	2 Holloman No. 2	CW127 CW117 CW127	### Holloman No. 2	CW125	Progenic Group Page	### Total Company Comp	### Property of Control Contro	1	2.8	2	2	RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 <u>@</u>@	The state of s					 											--	------------	------------	-------------	------------	-----------	-----------	-----------	-----------	------------------	-----------	-----------	-----------	-----------	-----------------------------		Mixed Strain				×			×							Type B		Group G					×											Species Unidentified																Pyogenic Group																Veridans Group									>- '11							Equinus																Lactic Group																Type		C				C				ß				C		O namuH					X											AitiM			×	×	X	×	X	×	×		×	×	×			Bovis						X			X							Salivarius			×	×	×	×	X	×	X		×	×	×	×		Non-Types	*×	*×		*×		×					*×		*×			Enterococci			X	×	:	×	×		×	×	×	×	×	×		ВАС Иитрет	C-2	C-14	C-64	CF120	CW1	CW13	CW25	CW38	CW55	CW62	CW74	CW87	CW97	CW112		Holloman No.	169	169	169	169	170	170	170	170	170	170		170		170		Animal	Possum (a)	Possum (a)	Possum (a)	Possum (c)	Randy (b) Bandy (b)	Randy (b)	Randy (b) 170 CW112 X	RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 <u>a</u> @ 0 Table 3 -- Continued	Mixed Strain			Type B									×	×	,	964 1965		-------------------------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	---------	---------	---------	---------	---------	---		9 dnox9															Dec. 1964 5, May 196 991		Species Unidentified															AF29(600)-4124, Dec. 1964 " AF29(600)-4555, May 1965 88." AF29(600)-4991		Pyogenic Group															" AF29(600)-4124, e," AF29(600)-455 gees," AF29(600)-4		Veridans Group															1, " AF2 2ee, " A nzees.'		Equinus															anzees impanz himban		Lactic Group															f Chimp the Ch		Type			ບ												Tract of Chimpanzees, "AF29(600)-4124, DeFlora of the Chimpanzee," AF29(600)-4555, Population of Chimpanzees," AF29(600)-4991		Human C							_			×							Mittis			×		×	×	×	×	×	×		×	×		erial Flora of the Alimentary of Diet on the Normal Fecal		Bovis													×		of the the No		Salivarius	×	×	×	×	×					×	×	×	×		Flora		Non-Types	*×			*×	*×	*×	*×	**	*×	*×	×				ity cterial ce of E		Enterococci	×	×		×	×			×	×	×	×	×	×	×	le pathogenicity "Study of Bacteri "The Influence of		ВАС Иштрег	CW120	CW131	CW142	CW154	CW165	C-3	C-20	CF143	CF162	CW6	CW19	CW27	CW47	CW50	le path "Study "The]		Holloman No.	170				170	170		170		158	158	158	158		ates possible pathogenicit 1095-5FR, "Study of Bact 1787-5FR, "The Influence		Animal	Randy (b)	Randy (b)	Randy (b)	Randy (b)	Randy (b)	Randy (a)	Randy (a)	Randy (c)	Bandy (C)	Red (b)	Red (b)	Red (b)	Red (b)	Red (b)	<u>3</u> 000		<i>y'</i>													$\overline{}$				-------------------------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------------	----------	---		Mixed Strain					Type												9 quorð																	Species Unidentified																	Pyogenic Group																	Veridans Group																	Equinus																	Lactic Group																	Type												∢					Human C																	aitik	×	×		×	×	×	×	×	×	×		×	×	<u>,</u>			Bovis	×										×						Salivarius	×		×	×	×	×	X	×	×	×	×	×			ļ		səqvT-noV				*×		*×	*×	*×	*×	*×	*×		*×				Enterococci	X	×	X	×	1 1	×	×		×	×			×				PAG Number	CW64	CW75	CW89	CW101	CW119	CW123	CW133	CW147	CW162	CW168	C-7	C-13	CF163		-		oN namolioH	158	158									158	158	158				Animal	Red (b) (a)	Red (a)	Red (c)			Indicates possible pathogementy Blora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 RAC 1095-5FR, "Study of Bacterial Flora of the Chimpanzee," AF29(600)-4555, May 1965 RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzees," AF29(600)-4991 RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 **a Q Q** Table 3 -- Continued		T T	1	1	1		1	T				 T		1		1		--------------	-------------------------	------------	------------	------------	---	-------------	-------------	-------------	------------	------------	-----------	-----------	-----------	-----------	------------------------------------			Mixed Strain	×			•								×		, 00			9 quox9																	Species Unidentified																	Pyogenic Group																	Veridans Group																	Equinus																	Lactic Group																Collectioned	Type		,															D nsmuH																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
1			ı anıe o -	alitiM	×	×			×	×	X	×	X	X		X	×			T G	Bovis																	Salivarius				:	×			×	×	×		x	×				Non-Types					×	*×	*×		*×	*×	*x			city			Enterococci	×	×	×			×	×	×	×		×	×		ogeni			нас Митрет	CF123	CF131	C-9A		C-16	C-41	CF112	CF140	CF156	CW4	CW16	CW30	CW40	ole pati			Holloman No.	231	231	231		116	116	116	238	238	122	122	122	122	s possil			Animai	Richie (c)	Richie (c)	Richie (c)		Shirley (a)	Shirley (a)	Shirley (c)	Shorty (c)	Shorty (c)	Sonia (b)	Sonia (b)	Sonia (b)	Sonia (b)	* Indicates possible pathogenicity	RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 <u>@</u>@@							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												-------------------------	-----------	-----------	-----------	-----------	-----------	---	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	------------------------		Mixed Strain																		G quord																		Species Unidentified																		Pyogenic Group																		Veridans Group															-			Equinus																		Lactic Group										•								Type																		Human C					•													Mittie			X	X	X	X	X	X	X	X	X			×	×			Bovis																		Salivarius				×	×		X		×	X		×	×					Non-Types		*×	*×	*×		*x	*×	·				*×	*×	*×		itv		Enterococci	×	×	×	×			X	X	×	×	X		×	×	×	ogenic		ВАС Иитрег	CW57	CW70	CW82	CW86	CW106	CW110	CW126	CW136	CW144	CW157	CW166	C-8	C-11	CF142	CF174	possible pathogenicity		Holloman No.	122													122	122	diagon		Animal	Sonia (b) Somia (b)	Sonia (a)	Sonja (a)	Sonia (c)	Sonia (c)	* Indicates	Indicates possible pathogenicity RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 * @@© Table 3 -- Concluded	•	Mixed Strain													1964		----------	-------------------------	----------------	---------	---------	------------	------------	---	---	---	---	---	--	---	---			ე dnoxე													ပ်			Species Unidentified													Tract of Chimpanzees," AF29(600)-4124, De Population of Chimpanzees," AF29(600)-4991			Pyogenic Group													29(600) ' AF29			Veridans Group													3," AFS			Equinus													oanzees Shimpa			Lactic Group													Chimi lon of C		oncinaea	Type			သ					-					ract of		100	Human C													ntary 1 terial I		rante o	atitM			×										Alime al Bact			Bovis	×	×											of the he Fec			Salivarius			×	×									y erial Flora of the Alimentary "Study of the Fecal Bacterial			sədvT-noN	*	*×	*×	*×	*×	-	·			•			city acteria 1), "Stu		ļ	Enterococci		×	X		×								hogeni y of Ba			тәфширет	<u>င</u> -၁	C-63	CF110	G-9	CF168							·	ole pat "Stud terly r			ной пватойон	149	149	149	168	168								s possi 5-5FR 4 (quar			Animal	Van (a)	Van (a)	Van (c)	Walter (a)	Walter (c)				٠				* Indicates possible pathogenicity (a) RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4	RAC 1095-5FR, "Sudy of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991												 	 ——т			-------------------------	----------	---------	---------	-----------	-----------	----------	---------	-------	-----------	-----------	------	---------	--		Mixed Strain															9 dnox9															Species Unidentified								·							Pyogenic Group					×					×					Veridans Group					×										Equinus															Lactic Group															Type															Нитап С															Mitia	×														Bovis															Salivarius	×	X		×	×	x		×	×	×					səd&L-uoN						×		×		×					Enterococci			×	×											дефитрет ДАЯ	Man 1	Man 2	Man 3	Man 4	Man 5	Man 6	Man 7	Man 8	Man 9	Man 10					Holloman No.															Handler	L. Boone	B. Teal	R. Vegl	A. Taylor	C. Barton	L. Boone	B. Teal		A. Taylor	C. Barton				TABLE 5. OCCURRENCE OF CORYNEBACTERIUM	Name	Holloman Number	RAC Number	striatum	pseudodip- theriticum	xerosis	acnes	species		-------------	--------------------	---------------	----------	--------------------------	---------	-------	---------		Pepe	252	C-5A			х				Penny	276	C-6A				Х			Richie	231	C-9A			X				Lorreine	276	C-10A				Х			Dick	110	C-15A		X		Х			Karen	177	C-16A	X		X				Mandy	208	C-17A			_		Х		Fay	254	C-22A			X										•	T.		L. R. Boone		M- 1			X				B. J. Teal		M-2			X				R. H. Vegl		M -3			X	Х			L. R. Boone		M-6		X	X				B. J. Teal		M -7			X				A. Taylor		M -9			X			## TABLE 6. RECOVERY OF SPIROCHAETALES FROM DEEP BLOOD FLASKS ## Spirillum was isolated from the following handler and animals:	Animal Name	Holloman Designation	RAC Designation		-------------	----------------------	-----------------		Betty	203	C-1A		Fay	254	C-3A		Lorreine	273	C-10A		Lady Bird	274	C-11A		Snoopy	272	C-14A		Cary	183	C-18A		Oscar	211	C-19A		Debbie	204	C-20 A		Pepe	252	C-21A		Buddha	263	C-24A		Lucy	264	C-25A	## Handler A. Taylor Man 4 TABLE 7. OCCURRENCE OF PPLO ## The following animals showed the occurrence of PPLO:	Animal Name	Holloman Designation	RAC Designation		-------------	-------------------------	--------------------		Sara	261	C-2A		Fay	254	C-3A		Pepe	252	C-5 A		Lady Bird	274	C-11A		Andy	225	C-12A		Snoopy	272	C-14A		Dick	110	C-15 A		Karen	177	C-16A		Mandy	208	C-17A		Oscar	211	C-19A		Fay	254	C-22A		Winny	262	· C-23A		Buddha	263	C-24A		Lucy	264	C-25A	8. COMPARISON OF MISCELLANEOUS AEROBES RECOVERED FROM FECES TABLE					·										--------------------------------	-------	-------	-------	---	-------	-------	---	-------	-------	-------	-------	-------		Netseria					×									Gaffkya														Sarcina			×											aullipadoteal	×		×		X	X		×	×	×		×		Fungi Media	×	×	×					×	can.	×		×		Vibrio														Gram Positive Rod					×				×	×				Corynebacteria						X								PPLO			×					×		×				Leptotrichia														Pneumococcus								×	×					Haemophilus														Б ар ру јососсив	×	×			×	×	*	×	×	×				ВАС Митрет	CF122	CF130	C-12A		C-6	CF118		C-22	C-35	C-43	C-61	C-1A		Holloman No.	225	225	225		167	167		203	203	203	203	203																Animel	(c)	(c)	(၁)		(a)	(O)		(a)	(a)	(a)	(a)	(၁)		An	Andy	Andy	Andy		Annie	Annie		Betty	Betty	Betty	Betty	Betty	(a) RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 Table 8 -- Continued	Strang Mario Wibrio																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
--						× × × ×		×		×		* *		* ×													RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 Chimpanzees," AF29(600) -4124, Dec. 1964 Table 8 -- Continued						 		 								-------------------------	----------	----------	----------	----------	-------------	-------------	----------	----------	---	-----------	-----------	-----------	--		Micrococcus Sp.						×		×							Neisseria					 				_	-+					Gaffkya					 										Sarcina			×												aulitasdotas.I	×	×	×	×		×						×			Fungi Media	x			×	×	×	×			×	×	×			ohdiV															Gram Positive Rod		×	×												Corynebacteria		×													PPLO		×	×												Leptotrichia															Pneumococcus						_									Baemophilus	ХB	×													екар ру Гососсив		×	×		X	×	**	x		×	×				тэфший ЭАЯ	C-25	C-40	C-45	C-18A	CF128	CF150	CF133	CF154		CF121	CF132	C-8A			Holloman No.	183	183	183	183	245	245	246	246		226	226	226			Animal	Cary (a)	Cary (a)	Cary (a)	Carv (a)	Chester (c)	Chester (c)	Clay (c)	Clay (c)		Dearl (c)	Dearl (c)	Dearl (c)		* Indicates possible pathogenicity (a) RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991	AireasieN							×				×					-------------------	-------------	--------	--------	--------	--------	--------	--------	--------	--------	--------	------------	-------------	--------	----------		Gaffkya																gniora?																auliloadotoa.I	×	×	×	×	×	×	×	×	×	×		×				Fungi Media	×	×	×	×	×	×						×	×	×		Vibrio																boH evillaod marD				**X	**X		×									Corynebacteria								×								PPLO																Leptotrichia					`											Pneumococcus																Haemophilus							×				×					Staphylococcus							×	×		**						вус интрег	CW120	CW122	CW134	CW146	CW161	CW169	, t	C-12	CF126	CF167	 CW11	CW21	CW32	CW42		ноПотяп Ио.	145	145				145	145				 198	198	198	198			(9)	(p)	(q)	(q)	(p)	(q)	(a)	(a)	(c)	(c)	(9)	(9)	(Q)	@		Animal	Denise Donald	Donald	Donald	Poneld	RAC 2544(quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600) 4991 (b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 AF29(600)-4124, Dec. 1964 ** Beta Hemolytic Bacillus Table 8 -- Continued						· · · · · · · · · · · · · · · · · · ·											1					-------------------------	--------	--------	------	--------	---------------------------------------	--------	--------------	--------	-------	-------	-------	-------	---	-------	-------------	--------------------------------------	-----------	--	----------		Мецвветів																٠, و د	:	rees,			Gaffkya																npanze		umpen			Sarcina													·			he Chir					Lactobactilus	×	×	×	×	×	×	×	×	×	×	×	×		×	×	ra of t	:	pulatio			Fungi Media		×	×	×	×	×	×		×			×		×	×	Fecal Flora of the Chimpanzee,"	•	"Study of the Fecal Bacterial Population of Chimpanzees,			Vibrio																		l Bacte			Gram Positive Rod									**X	**X				×		he Nor	1	e Feca			Corynebacteria	×															"The Influence of Diet on the Normal	•	ly of th			PPLO														X		e of D	i	omas			Leptotrichia																nfluenc	1965	eports)			Биентососсия																"The I	May 1	(quarterly reports),			ewihiqomesH																-5FR,		_4) - 4991		S taphyloco ccus			×		×				×	×	×			×		RAC 1787	AF29(600)	RAC 2544	AF29(600		дус Ишрет	CW54	CW67	CW77	CW94	CW100	CW114	CW130	CW141	CW150	CW159	CW170	CF148		CW9	CW24	(b) RA	•	(c) RA	AF		Holloman No.	198	198			198	198	198	198	198		198	198		117	117							(b)	(p)	(b)	(b)	(p)	(b)	(b)	(q)	(p)	(q)	(q)	(c)		(q)	(2)	Beta Hemolytic	Uhus				Animal	Donald	Donald		Donald	Donald	Donald	Donald	Donald						Elbys	Elbys	** Bet	Bacillus			67 Table 8 -- Continued	Melsseria															lora o		------------------------	----------	------	------	----------	------	------	-------	-------	-------	-------	-------	--------------	-------------	--------	--		Gaffkya															Fecal Flora of sterial		Sarcina															rmal I		aulliosdotosal			×	×	×	×	×	×	×	×	×	×	×	×	"The Influence of Diet on the Normal Fecal" AF29(600)—4555, May 1965 erly reports), "Study of the Fecal Bacterial impanzees," AF29(600)—4991		Fungi Media			×	×	×			×	×	×	×	×	×	×	RAC 1787-5FR, "The Influence of Diet on the the Chimpanzee," AF29(600)-4555, May 196: RAC 2544 (quarterly reports), "Study of the Population of Chimpanzees," AF29(600)-4991		oltdiV															nce of 0) 455; 8), "St		Gram Positive Rod							*					**X			F29(60 report		Corynebacteria						×			×	×			×				PPLO															RAC 1787 –5FR, the Chimpanzee RAC 2544 (quar Population of Cl		Leptotrichia		X													tAC 17 he Chi tAC 25 Populat		Pneumococcus															 (a) (b)		Haemophilus																	Евр һу Тососсив		*	×	×	*	×		×		×	×	×	**		 nicity		RAC Mumber	CW36	CW44	CW59	CW72	CW83	CW95	CW107	CW115	CW129	CW139	CW151	CW160	CW171	C F145	pathoge		Holloman No.	117	117	117	117	117	117	117	117	117	117	117	117	117	117	ssible rtic Ba			(p)	(b)	(p)	(b)	(b)	(p)	(p)	(p)	(b)	(q)	(q)	(<u>a</u>)	(2)	(0)	Indicates possible pathogenicity Beta Hemolytic Bacillus		Animal	Elbys (t			Elbys (t		•	i				İ	1	i	1	* Indica		־		----------		ā		=		7		.=		+		_		Cont		rī		_		ŧ		į				∞														Table								 									_		-------------------------	------	-------	---	--------	-------	-------	------------------	---	-------	--------	---	---------	---------	---	--		Micrococcus Sp.										X							Neisseria						 									۶ٍ∤		Gaffkya															200		aniora?	×												×		"Study of Bacterial Flore of the Alimentery Tract of		aulilpadotaa.I	X	×		×	×	×	×		×			×																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
Alimon		Fungi Media	×	×		X	•	 ×		-	×	×		×	×		04+ 4p		Vibrio															Flore		Gram Positive Rod						x								-	granta		Corynebacteria		×	-			×									v of Re		PPLO	X	X				х									1		Leptotrichia				•							i				1095_5 FP		Р пецтососсив															BAC 109		Haemophilus															(o)		S ta рhylococcus				×	×		X		X			**	X		ioit		тәфатий ЭАЯ	C-3A	C-22Á		CF134	CF170	C-28	CF104		CF138	CF155		CF136	CF151		athoga		Holloman No.	254	254		239		155	155		237			234	234		athle n		Animel	(0)	(0)		(c) yd	(c)	(a)	(o) ¹		(c)	(o) AJ		mic (c)	mic (c)		* Indicates nossible nathogenicity		Ani	Fay	Fay		Floyd	Flowd	Gigi	Gigi		Glory	Glory		Gromic	Gromic] <u>*</u>	(a) third 1935-9111, Starty of Dates in Fig. 21 we following flact of Chimpanzees, "AF29(600)-4124, Dec. 1964 (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees." AF29(600)-4991 69 Table 8 -- Continued						 		 					-------------------	------	------	----------	----------	------------	------------	-------	-------	-------	-------		Metetia.												Gettkya												Sarcina												Lactobacillus	×	×		×	×	×		×		×		Fungi Media		×			×	×	×					oirdiV												Gram Positive Rod							×	×				Corynebacteria												PPLO	×							×				Leptotrichia			,									Preumococcus							×					Haemophilus												Staphylococcus	×	×		×		×	*	**	×	×		вус имрет	C-31	C-47	C -58	CF102	C-10	CF117	C-30	C-48	C-59	CF103		.oN namolioH	197				157		187	187	187	187							(a)	(0)				~		Animal	(a)	8	a	<u> </u>	ird	Ird	(g)	t (a)	t (a)	t (c)		And	Guv		1	i .	Howard (a)	Howard (c)	Janet	Janet	Janet	Janet	* Indicates possible pathogenicity (a) RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991	putinned		----------		ñ		!		∞		je		ap		Η					 , ,	····	 				 			 1		-------------------	-----------	-----------	-------------	-------------	-----------------	------------	------------	------------	------------	------------	---	------------------------------------		Micrococcus Sp.		×		×						·				Neisseria					14							 1		Gaffkya					×							 ł		antora2														aulilpadotos.1		×	×	×	×	×		×		×				Fungi Media	×					X	×							Vibrio														Gram Positive Rod				×	X						,			Corynebacteria														PPLO														Leptotrichia														Pneumococcus						×								Haemophilus														Staphylococcus	×	X	×	*		*X	**	×	*	×		enicity		ВАС Ичтрет	CF144	CF165	CF149	CF164	C-33	C-52	C-56	CF105	C-65	CF106		pathog		Holloman No.	243		190	190	199	199	199	199	217	217		saible		Animal	Jerry (c)	Jerry (c)	Laveeta (c)	Laveeta (c)	Lennie (a)	Lennie (a)	Lennie (a)	Lennie (c)	Linnus (a)	Linnus (c)		* Indicates possible pathogenicity	(a) RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 Table 8 -- Continued	Manuel (b) 139 CW152 X X X X X X X X X										1								--	------	--------------	------------	----------------	-------------	--------------	--------------	------	----------------	-------------------	--------	-------------	---------------	---------	--------	-----------		CW12 X X CW23 X* X CW43 X* X CW58 X X CW65 X X CW108 X X CW108 X X CW118 X* X CW140 X X CW152 X X CW152 X X CW152 X X CW154 X X CW154 X X CW154 X X CW154 X X		.ov namolioH	RAC Number	Staphylococcus	Haemophilus	Pneumococcus	Leptotrichia	DPLO	Corynebacteria	Gram Positive Rod	obidiV	Fungi Media	Lactobacillus	Sarcina	СаШкуя	RiteasieN		CW23' X* X CW43 X* X CW5 X X CW65 X X CW108 X X CW118 X* X CW128 X X CW126 X X CW152 X X CW162 X X CW163 X X CW164 X X CW152 X X CW164 X X CW176 X X CW166 X X CW176 X X CW166 X X CW176 X X CW166 X X CW176 X X CW176 X X CW166 X X CY176 X X X X X X X X X X X X X	ll i	139	CW12							×						×		CW34 X* X CW43 X* X CW58 X X CW96 X X CW108 X X CW118 X* X CW128 X X CW140 X X CW152 X X* CW152 X X** CW152 X X** CW154 X X** CW155 X X** CW154 X X** CW155 X X** CW156 X X** CW157 X X** CW156 X X** CW157 X X CW156 X X CW157 X X CW158 X X X X X X X X X X X X <t< td=""><td></td><td></td><td>CW23</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>×</td><td></td><td></td><td></td></t<>			CW23										×					CW43 X* X CW58 X X CW65 X X CW36 X X CW108 X X CW128 X X CW140 X X CW152 X X CW162 X X** CW175 X X** CW176 X X** CW177 X X** CW176 X X** CV176 X X** CV176 X X			CW34	*X								×						CW65 X X CW84 X X CW96 X X CW108 X X CW118 X* X CW128 X X CW140 X X CW162 X X*** CW162 X X*** CW163 X X*** CW164 X X*** CW173 X X*** CF146 X X***		139	CW43	*			,					×						CW65 X X CW96 X X CW108 X X CW118 X* X CW128 X X CW140 X X CW152 X X* CW162 X X** CW163 X X** CW164 X X** CW174 X X** CW174 X X** CW174 X X** CW174 X X** CW174 X X**		139	CW58	×								×	×					CW84 X X CW96 X X CW108 X X CW118 X* X CW128 X X CW140 X X CW152 X X CW152 X X** CW152 X X** CW152 X X** CW154 X X** CW175 X X** CW174 X X** CW175 X X** CF146 X X		139	CW65	×								×	×					CW96 X X CW108 X X CW118 X* X CW126 X X CW140 X X CW152 X X** CW162 X X** CW173 X X** CW1746 X X**		139	CW84	X								×	×					CW108 X X CW118 X* X CW128 X CW140 X CW152 X X CW162 X X*** X CW173 X X*** X CW1746 X X X		139	CW96	×								×	×					CW118 X* X CW128 X CW140 X CW152 X CW162 X CW163 X CW173 X CF146 X		139	CW108										×					CW128 X CW140 X CW152 X CW162 X CW173 X CF146 X		139	CW118						×			×	×					CW140 X CW152 X CW162 X CW173 X CF146 X		139	CW128									×						CW152 X X** X CW162 X X** X** CW173 X X X CF146 X X X	1	139	CW140									×	×					CW162 X X** CW173 X X X X CF146 X		139	CW152							**X		×	×					CW173 X CF146 X		139	CW162							**			×					CF146 X X		139	CW173										×							139	CF146	×								×	×	!			* Indicates possible pathogenicity ** Beta Hemolytic Bacillus Table 8 -- Continued														1		---------------------	-------------	----------	------------	----------	----------	----------------------	---	----------	-------	----------	---------	--------------	---------------------------------		Micrococcus Sp.												×	,		Neisseris						$\neg \neg \uparrow$									Getffeya		×													Sarcina															Lactobacillus	×	×	×	×	×	×			×		×	×			Fungi Media	×	×	×	×				×			×	×			OlidiV															Gram Positive Rod	**X	**X		×									lus		Corynebacteria			×	×									Bacillus		PPLO													Hemolytic		Leptotrichia													Beta He		Preumococcus													H **		eulinqomesH												-			Staphylococcus		×	. X	X	X	X		×	×.		*X	X	nicity		ВАС <i>Мит</i> орет	CW143	CW153	CW164	C-19	CF125	CF166		C-67	CF100		CF137	CF157	pathoge		Holloman No.	172	172	172	172	172			196	196		236		stble		ą	(Q)	(q)	(g)	(a)	(0)	(0)		, (a)	(e) ,		(0)	(0)	Indicates possible pathogenicit		Animel	Marc	Marc	Marc	Marc	Marc	Marc		Marty	Marty		Mel (c)	Mel (c)	* Ind			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	L	<u> </u>	L	<u> </u>	L	L	J	(a) RAC																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 (b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees" AF29(600)-4991 Table 8 -- Continued	·														-------------------	------	------	------	----------	----------	------	----------	------	-------------	-------	-------	----------		Melaseria														Cattkya														Sarcina														Lactobacillus		×	×	×		×	×	×	×	×	×	×		Fungi Media	×	×		×	×	×	×		×	×	×	×		Vibrio														Gram Positive Rod			_											Corynebacteria														DPLO	×													Leptotrichia			•											Preumococcus														Hsemophilus														Staphylococcuв	×	×		×	×		×	×	*	×		×		тефший ОАЯ	CW2	CW14	CW26	CW37	CW56	CW61	CW73	CW88	CW98	CW111	CW121	CW132		Holloman No.	172	172	1	172	172	ĺ	172	172	172	172	172	172																Animal	(e)	9	æ	@	@	æ	£	(q)	(9)	æ	9	②		And	Marc * Indicates possible pathogenicity (b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 Table 8 -- Continued				 														-------------------	--------------	--------------	----------	----------	----------	----------	----------	----------	----------	----------	----------	-------------	----------	----------	-------		Neiseeria		×															Gaffkya															1		Sarcina															1		Lactobacillus	×			×		×	×	×	*	×		>	×	×			Fungi Media	×	×	×	×	×	*	×	×	* ×	×	×	>	×	×			Vibrio																	Gram Positive Rod			×												-		Corynebacteria											×		×	×			PPLO			×														Leptotrichia				•													Pneumococcus			X														aulinqomeaH																	Staphylococcus	×	×	×	X	X	X	×	X	*	*×	· 🗙	×		×			турс Митрет	CF135	CF152	CW3	CW15	CW29	CW39	CW60	CW71	CW81	CW85	CW105	CW109	CW127	CW135	44.0		Holloman No.	235	235	126	126	126						126	126			11.1		Animal	Meredith (c)	Meredith (c)	Mimi (b) 10000	* Indicates possible pathogenicity (b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)—4555, May 1965 (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees" AF29(600)—4991 Table 8 -- Continued							 			 				-------------------	----------	----------	----------	----------	----------	---------	------	-------	----------	----------	--------------------		Nelsserta						×							Gaffkya													Sarcina													aullicadotes.I	×	×	×	×	×		×	×	×	×			Fungi Media		×	×						×				Vibrio													Gram Positive Rod	**X	**X					×				Hemolytic Bacillus		Corynebacteria			×						×		lytic E		DPLO						 	×	×	×		a Hemo		Leptotrichia											** Beta		Preumocoocus										···	-		Haemophilus													Staphylococous	×	×	×	*X	×	×	*				nicity		RAC Number	CW145	CW158	CW167	CF141	CF169	C-26	C-44	C-19A	C-5A	C-21A	pathoge		.oM mamolioH	126	126	126	126	126	211	211	211	252	252	-			_	2	2	6	<u>~</u>	(a)	(a)	(0)		<u>~</u>	204		Animal	Mimi (b)	Mimi (b)	Mimi (b)	Mimi (c)	Mimi (c)	Oscar (1	i	Pepe (c)	Pepe (c)				Z	×	×	×	_ ≥		0	l°	Д		'	Tudicates possible patnogeniony (a) RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 (b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees" AF29(600)-4991 A STATE OF THE PARTY PAR * Indicates possible pathogenicity ** Beta Hemolytic Bacillus (b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965	×	×	-	×	×	×	×	×	×	×	×	×	×	×	×			----------	-----------------------	------------------------------	---	--	--	--	--	--	--	--	--	--																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
--	---	---		×		×	×	×	×	×	×	×	×	×	×	×	×	×																				×													**X	/																				×																																																																				×	×		X	X	×		X	×					×	*×			CW8	CW22	CW35	CW46	CW51	CW69	CW80	CW91	CW104	CW117	CW125	CW137	CW149	CW155	CW174	14. 1 1. 1.		174			174	174	174	174	174	174	174	·		174	174	174														(4)	•			Phil (b)			Phi (b)	Phil (b)									Phil (b)					(b) 174 CW8 X X X X X	(b) 174 CW22 X X X X X X (b)	(b) 174 CW2 X X X X X X (b) 174 CW22 X (c) (d) 174 CW35	(b) 174 CW22 X X X X (b) 174 CW35 X X X (b) 174 CW46 X X X	(b) 174 CW2 X X X X (b) 174 CW35 X X X (b) 174 CW46 X X X (b) 174 CW51 X X X	(b) 174 CW22 X X X X (b) 174 CW36 X X X (b) 174 CW46 X X X (b) 174 CW61 X X X (b) 174 CW69 X X X	(b) 174 CW22 X X X X X (b) 174 CW36 X CW36 X X X (b) 174 CW61 X X X X (b) 174 CW69 X X X X (b) 174 CW69 X X X X (b) 174 CW80 X X X	(b) 174 CW22 X X X X X (b) 174 CW36 X C X X X (b) 174 CW61 X C X X X (b) 174 CW69 X C X X X (b) 174 CW80 X C X X X (b) 174 CW80 X X X X X (b) 174 CW80 X X X X	(b) 174 CW8 X X X X X (b) 174 CW22 X X X X (b) 174 CW46 X X X X (b) 174 CW69 X X X X (b) 174 CW80 X X X X (b) 174 CW80 X X X X (b) 174 CW80 X X X X (b) 174 CW80 X X X X (b) 174 CW104 X X X X	(b) 174 CW82 X X X X X (b) 174 CW35 X CW35 X X X (b) 174 CW46 X CW35 X X X (b) 174 CW69 X CW35 X X X (b) 174 CW91 X CW31 X X X (b) 174 CW104 X X X X (b) 174 CW114 X X X X	(b) 174 CW82 X X X X (b) 174 CW35 X X X (b) 174 CW46 X X X (b) 174 CW69 X X X (b) 174 CW91 X X X (b) 174 CW104 X X X (b) 174 CW116 X X X (b) 174 CW116 X X X (b) 174 CW116 X X X (b) 174 CW116 X X X (b) 174 CW126 X X X	(b) 174 CW82 X X X X (b) 174 CW35 X X X (b) 174 CW46 X X X (b) 174 CW69 X X X (b) 174 CW91 X X X (b) 174 CW104 X X X (b) 174 CW114 X X X (b) 174 CW126 X X X (b) 174 CW126 X X X (b) 174 CW126 X X X (b) 174 CW126 X X X (b) 174 CW137 X X X (b) 174 CW137 X X X (b) 174 CW137 X X X	(b) 174 CW8 X X X X (b) 174 CW36 X X X (b) 174 CW46 X X X (b) 174 CW60 X X X (b) 174 CW91 X X X (b) 174 CW91 X X X (b) 174 CW117 X X X (b) 174 CW126 (c) 174	(b) 174 CW2 X X X X (b) 174 CW36 X X X X (b) 174 CW46 X X X X (b) 174 CW69 X X X X (b) 174 CW104 X X X X (b) 174 CW114 X X X X (b) 174 CW116 X X X X (b) 174 CW126 X X X X (b) 174 CW136 X X X X (b) 174 CW136 X X X X (b) 174 CW166 X X X X (b) 174 CW166 X X X X (b) 174 CW166 X X X <th>(b) 174 CW22 X X X X (b) 174 CW35 X X X (b) 174 CW46 X X X (b) 174 CW69 X X X (b) 174 CW104 X X X (b) 174 CW104 X X X (b) 174 CW104 X X X (b) 174 CW104 X X X (b) 174 CW105 X X X (b) 174 CW104 X X X (b) 174 CW105 X X X (b) 174 CW105 X X X (b) 174 CW105 X X X (b) 174 CW105 X X X (b) 174</th>	(b) 174 CW22 X X X X (b) 174 CW35 X X X (b) 174 CW46 X X X (b) 174 CW69 X X X (b) 174 CW104 X X X (b) 174 CW104 X X X (b) 174 CW104 X X X (b) 174 CW104 X X X (b) 174 CW105 X X X (b) 174 CW104 X X X (b) 174 CW105 X X X (b) 174 CW105 X X X (b) 174 CW105 X X X (b) 174 CW105 X X X (b) 174	Table 8 -- Continued Table 8 -- Continued												 			-------------------	----------	----------	---	------	----------	---	---------	--------	-------------	--------	------	---		Meseria							×							Gelikya						·					į			Sarcina														Lactobacillus		×					×	×	×	×				Fungi Media		×			×			×	×	×				Vibrio														Gram Positive Rod				×			×					!		Corynebacteria														DPLO							×	×						Leptotrichia			,				×							Preumocoocus							×	:						Bemophilus							×							Staphylococcus.	*	×	1	×	×		×	×		×				RAC Number	C-15	CF147		C-66	CF109		C-2	C-14	C-64	CF120				.oN namolioH	174	174	1	218	ł		169	169	169	169											(a)	(a)	(a)	(c)				Animel	(a)	9		(a)	<u>©</u>		an mark	ans	anm	Possum				4	Phil (a)	Phil (c)		Pop	Pop		Possum	Possum	Possum	Pos						1	1	i		1	1	l	1	1	1	١	* Indicates possible pathogenicity (a) RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 Table 8 -- Continued						т			T			1	- 1	1		$\overline{}$			-----------------------	-------	-------------	-------	-------------	-------	-------	-------	-------	-------	-------	--------	-------	-------	-------	---------------	------------------------------------		Meleseria																		Gattleya																		Sarcina														×				Lactobacillus		×		×	×	×	×	×	×	×	×	×	×	×	×			Fungi Media	×		×	×	×	×	×	×	×	×	×	×	×	×	×			Vibrio																		Gram Positive Rod														**				Corynebacteria																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
					×			PPLO	×							,										Leptotrichia				•														Блеитососсия																`a.'.		Haemophilus																		Ервруу ососсия					×		×	×						*		4044		RAC Number	CW1	CW13	CW25	CW38	CW55	CW62	CW74	CW87	CW97	CW112	CW120a	CW131	CW142	CW154	CW165	Total coton managed and beautifult		Holloman No.	170	170	170	170		170	170	170	170	170	170	170	170	170	170	11.1			(q)	(Q)	(9)	(q)		Animal	Randy	Randy	* T-34	* Indicates possible pathogenicity ** Beta Hemolytic Bacillus (b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 Table 8 -- Continued * Indicates possible pathogenicity (a) RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 (b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees" AF29(600)-4991 Table 8 -- Continued				1						1		1		 T	1				-----------------------	-------	-------	-------	-------	-------	-------	------	-------	---	------------------	------------------	--------	---------	---------	-----------------------	----------		Micrococcus Sp.								×										Neisseria						×							×					Gaffkya																,		Sarcina																		auliinsdotns.I	X	X	X	×	×	X	X	×		×		×	×	×	×			Fungi Media			×				×			×	×		×	×	×			Vibrio			٠															Gram Positive Rod			**X	**X		×	×							×	1			Corynebacteria			X	·						X		×						PPLO													×	×				Leptotrichia																		Pneumococcus																		au lhiqome a H												×						Staphylococcus			×	×		×	×	X		×	×	•	×	×	×			тәфишрет	CW123	CW133	CW147	CW162	CW168	C-7	C-13	CF163		CF123	CF131	C-9A	C-16	0-41	CF112	acillus		Holloman No.	158	158	158	158	158	158				231	231	231	116	116	116	Juffic B		7	(q)	(p)	(p)	(p)	(q)	(a)	(a)	(c)		(o) ⁶	(o) ^e	(c)	y (a)	y (a)	Shirley (c) 116 CF112	ta Hemo		Animel	Red (Red (Red (Red (Richie	Richie	Richie	Shirley	Shirley	Shirle	** Bo	(a) RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600) 4124, Dec. 1964 (b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600) 4555, May 1965 (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees" AF29(600) 4991 Table 8 -- Continued	Animel	Shorty (c)	Shorty (c)		Sonia (b)	-------------------	------------	------------	---	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------		Holloman No.	238	238		122	122	122	122	122	122	122	122	122	122	122	122		RAC Number	CF140	CF156		CW4	CW16	CW30	CW40	CW57	CW70	CW82	CW86	CW106	CW110	CW126	CW136		Staphylococcus	*X		l				*X					×		×			Baemophilus										-							Pneumococcus																	Leptotrichia				٠													PPLO															•		Corynebacteria				×			-										Gram Positive Rod				×													olrdiV																	Fungi Media	×			×	×	×	×	X	×	×			×	×			auliloadotoa.I					×		×	X	×	×	×	×	×	×	×		Sarcina																	Gaffkya									·								<u>Меівветія</u>																* Indicates possible pathogenicity (b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees" AF29(600)-4991 Table 8 -- Continued	Micrococcus Sp.							×										-----------------------	-------	-------	-------	-------	-------	-------	-------	---	-----	------	-------	---	---------	---------	-------------------------		Neisseris					_	_						_	×				Geffleya		×															Sarvina									×				×				Lactobacillus	×	×	×	×	×	×	×		×	×	×		×	×			Fungi Media		×	×			×			·		×			×			oltdiV				×													Gram Positive Rod	**X	**X		X	×				×	×			×		11:5		Corynebacteria			×	×				·	×				×		Date Homelands Deathing		PPLO				×											1		Leptotrichia				X.									X	·	1 27.00		Бпентососсия				×	×								×		44		aulhqomasH																	гар иулососсив	×		ļ	*	×	×	×		×	×	×		×				душтрет	CW144	CW157	CW166	8 U	C-11	CF142	CF174		C-5	C-63	CF110		G-9	CF168			Holloman No.	122			122		1	122	1	149	149			168	168			mel	a (b)	a (b)	(b)	g (a)	(a)	a (c)	(c)		(a)	(a)	(c)		ter (a)	ter (c)			Animel	Sonia	Van	Van	Van		Walter	Walter		(a) RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 (b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees" AF29(600)-4991														-------------	------------	----------------	--	---	--																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
--
---|--
---|--|--| | | | | | | | | | | | | | | | · | | | | | | | | | | | | | | × | × | | | | | | | | × | | × | X | × | X | X | X | x | × | × | × | × | × | | × | | × | × | | | × | × | | × | | × | X | × | | | × | × | | | | | × | x | | × | | | | | | × | × | | | | • | × | | × | | | | | × | | × | | | | | | | | *X | × | | | × | × | | | C-1A | C-2A | C-3A | C-4A | C-5A | C-6A | C-7A | C-8A | C-9A | C-10A | C-11A | C-12A | | 203 | 261 | 254 | 162 | 252 | 276 | 275 | 226 | 231 | 273 | 274 | 225 | | Betty | Sara | Fay | Angle | Pepe | Penny | Kenny | Dearl | Richie | Lorreine | Lady Bird | Andy | | | 203 C-1A X | 203 C-1A X X X | 203 C-1A X X X X 261 C-2A X X X X 254 C-3A X X X X X | 203 C-1A X X X X 261 C-2A X X X X 254 C-3A X X X X 162 C-4A X X X X X | 203 C-1A X X X X 261 C-2A X X X X 354 C-3A X X X X 352 C-4A X X X X X 252 C-5A X X X X X | 203 C-1A X <th>203 C-1A X<th>203 C-1A X<th>203 C-1A X<th>203 C-1A X<th>203 C-1A X</th></th></th></th></th> | 203 C-1A X <th>203 C-1A X<th>203 C-1A X<th>203 C-1A X<th>203 C-1A X</th></th></th></th> | 203 C-1A X
X <th>203 C-1A X<th>203 C-1A X<th>203 C-1A X</th></th></th> | 203 C-1A X <th>203 C-1A X<th>203 C-1A X</th></th> | 203 C-1A X <th>203 C-1A X</th> | 203 C-1A X | *Potentially pathogenic, mannitol salt positive TABLE 8 --- Continued | | | | | | 1 | | | T | 1 | | | Т | | |-------------------|-------|--------|-------|-------|-------|-------|-------|-----------|-------|-------|-------|--------|-------| | Nelsseria | | × | | | | | | | | | | | | | Getfikya | | | | | | | | | | | | | | | Sarcina | | X | | | | | | | | | | | | | sullisedotse.I | X | X | × | × | × | x | x | × | × | × | × | × | | | Fungi Media | Х | x | X | | | X | | | | × | | | | | Vibrio | | | | | | | | | | | | | | | Gram Positive Rod | | | | | | | | | | | | | | | Corynebacteria | | | × | X | × | | | | | × | | | | | b bro | | × | × | × | × | | × | | | × | × | × | × | | Leptotrichia | | | | | | | | | | | | | | | Paeumococcus | | | | | | | | | | | | | | | Haemophilus | | | | | | | | | | | | | × | | Staphylococcus | | | | × | | × | | | | | | | | | ньс Митрет | C-13A | C-14A | C-15A | C-16A | C-17A | C-18A | C-19A | C-20A | C-21A | C-22A | C-23A | C-24A | C-25A | | Holloman No. | 229 | 272 | 110 | 177 | 208 | 183 | 211 | 204 | 252 | 254 | 262 | 263 | 264 | | Animai | Brian | Snoopy | Dick | Karen | Mandy | Cary | Oscar | Debbie | Pepe | Fay | Winny | Buddha | Lucy | | | i | l | 1 | l | l | 1 | l | L | _ | 1 | L | 1 | | | | | | | | | | | | | | | | |-------------------|-------|-------|-----|-------|------|-------------|-------|-------|------|-----|----------|----------| | Meleseria | | | | : | | | | | | | | | | Galfleya | | | | | | | | | | | | | | Sarcina | | | | | | | | | | | | | | Euflicedotosal | X | × | × | × | × | × | X | × | | | × | × | | Fungi Media | | × | | | | | | × | | × | × | × | | Vibrío | | | | | | | | | | | | | | Gram Positive Rod | | | | | | | | | | | | | | Corynebacteria | | | | | | | | | | | | | | PPLO | | | | | | | | | | | | | | Leptotrichia | | | • | - | | | | | | | | | | Preumococcus | | | | | | | | | | | | | | Haemophilus | | | | | | | | | | | | | | Staphylococcus. | × | × | X | × | × | × | × | × | × | × | × | X | | вус импрет СW | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | | Holloman No. | 196 | 202 | 197 | 187 | 155 | 199 | 217 | 232 | 136 | 218 | 149 | 130 | | Antmal | Marty | Susan | Guv | Janet | Gigi | Lennie | Linus | Rosie | Норе | Pop | Van | Clayton | | | | - | | | | |] |] | `l | | <u> </u> | <u> </u> | Table 8 -- Continued | | | | | | | T | | T | | | T | <u> </u> | |-------------------|---------|------|-------|-----|--------|--------|-------|-------|-------|-------|------|----------| | ятэ эгі й | | | | | | | | | | | | | | Getfleya | | | | | | | | | | | | | | Saroina | | | | | | | | | | | | | | sullinedothas.I | × | × | × | × | × | × | × | × | × | | × | × | | Fungi Media | × | × | × | × | | × | | × | × | × | × | × | | otrdiv | | | | | | | | | | | | | | Gram Positive Rod | | | | | | | | | | | | | | Corynebacteria | | | | | | | × | | | | | × | | PPLO | | | | · | | | | | | | | | | Leptotrichia | | | • | | | | | · | | | | | | Preumococcus | | | | | | | | | | | | | | Haemophilus | | | | | | | | | | | | | | Staphylococcus | × | × | × | × | × | × | × | × | × | × | × | × | | ВАС Ишрет СW | 112 | 113 | 114 | 115 | 118 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | | Holloman No. | 116 | 114 | 143 | 101 | a
r | 157 | 167 | 224 | 1 69 | 226 | 225 | 231 | | Animal | Shtrley | Bufe | 78788 | Roy | 1174 | Howard | Annie | Freda | Dogum | Dearl | Andv | Richie | | | | | | · · · · · | , | | | | | | т-т | | |-------------------|-------|------|--------|-----------|--------------|-------|------|--------|-------|------|-------|----------| | Nelsseria | | · | | | | | | | | | | | | Gathtya | | | | | | | | | | | | | | aniona | | | | · | | | | | | | | | | aulitoadotoa.I | × | × | × | X | | | | | | | × | × | | Fungi Media | × | | | X | × | × | × | × | × | × | × | × | | Obsdiv | | | | | | | | | | | | | | Gram Positive Rod | | | | | | | | | | | | | | Corynebacteria | X | | | | | × | | | | | | | | DBFO | | | | | , | | | | | | | | | Leptotrichia | | | • | | | | | | | | | | | Раминососсия | | | | | | | | | | | | | | Haemophilus | | | | | | | | | | | | | | Staphylococcus | × | × | × | × | X | × | × | × | × | *X | X | × | | ВАС Митрет СW | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | | Holloman No. | 229 | 192 | 145 | 244 | 245 | 229 | 225 | 231 | 226 | 246 | 239 | 235 | | Animai | Brian | Marc | Denise | Tina | Chester | Brian | Andy | Richie | Dearl | Clay | Floyd | Meredith | | | L | | | | | | | | | |] | | Table 8 -- Continued | Meisseria | | | | | | | | | | | - | | |-------------------|--------|-----|-------|-----|--------|------|-------|-------|-------|-------|--------|------| | Getffeya | | | | | | | | | | | | | | Sarcina | | | | | | | | | | | | | | Lactobacillus | × | X | X | | | X | X | X | | X | × | × | | Fungi Media | × | X | X | X | × | | X | | × | × | × | × | | Vibrio | | - | | | | | | | | | | | | Gram Positive Rod | | | | | | | | | | | | | | Corynebacteria | | | | | | | | | | | | | | PPLO | | | | | | | | | | | | | | Leptotrichia | | | • | | | | | | | | | | | Pneumococcus | | | | | | | | | | | | | | Haemophilus | | | | | | | | | | | | | | Staphylococcus | *X | *× | × | × | *X | *X | × | X | × | × | X | × | | ВАС Иштет СW | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | | Holloman No. | 234 | 236 | 237 | 233 | 238 | 126 | 122 | 170 | 243 | 117 | 139 | 174 | | Animal | Gromic | Mel | Glory | Bob | Shorty | Mimi | Sonia | Randy | Jerry | Elbys | Manuel | Phil | Potentially Pathogenic Table 8 -- Continued | | Т Т | | | 1 | | 1 | | т | | — Т | | | |-------------------|-----|-------|-------|---------------|---------|-------|----------|----------|----------|----------|----------|----------| | Micrococcus sp. | | | × | × | × | × | | | | | | | | Neisseria | | | | | | | | | | | | | | Gaffkya | | | | | | | | | | | | | | Sarcina | | | | | | | | | | | į | | | aulliaedotae.I | X | | × | × | × | X | X | × | × | × | × | | | Fungi Media | × | | × | · | | | | | × | | | | | Vibrio | | | | | | | | | | | | | | Gram Positive Rod | | | | | × | | | | | | | | | Corynebacteria | | | | | | | | | | | | | | PPLO | | | | | | | , | | | | | | | Leptotrichia | | | , | | | | ļ | | | | | | | Pneumococcus | | | • | | | | | | | | | | | Haemophilus | | | | | | | | | | | | | | Staphylococcua | | ** | *x | × | ** | × | × | * | | × | × | *X | | MAC Number CW | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | | Holloman No. | 257 | 256 | 170 | 158 | 190 | 243 | 172 | 145 | 169 | 126 | 239 | 259 | | Animal | May | Henry | Randy | Red | Laveeta | Jerry | Marc | Denise | Walter | Mimi | Floyd | Francis | | | L | | | | | | <u> </u> | <u> </u> | <u> </u> | <u> </u> | <u> </u> | <u> </u> | * Potentially Pathogenic, Coagulase-Positive Staphylococcus + 2 Coagulase-Negative Staphylococci also isolated Marie Mari Table 8 -- Continued | Micrococcus sp. | | | × | | × | | × | × | × | × | | × | | |----------------------------|--------|---------|---------|--------|----------|-----|----------|-------|--------|----------|-----|-----|----------| | Gelfeetis
Gelfeetis | | | - | | <u>.</u> | | | | | | | | | | Sarroins | | | | × | | × | | | | | | | | | Lactobacillus | × | × | × | | | | | | | × | × | × | | | Fungi Media | × | | × | × | × | | | X | | × | | × | | | Vibrio | | : | | | | | | | | | | | | | Gram Positive Rod | | | | | | | | | | | | | | | Corynebacteria | | | | | | | | | | | | | | | PPLO | | | | | | | | | | | | | | | Leptotrichia | | | , | | | | | | | | | | | | Preumococcus | | | | | | | | | | | | | | | Haemophilus | | | | | | | | | | | | : | ľ | | З св руу 100000 сив | | × | × | × | × | × | × | × | * | × | *X | *X | • | | МАС Митрет СW | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 |] `
] | | .oN namolloH | 198 | 190 | 245 | 234 | 235 | 233 | 246 | 237 | 238 | 236 | 258 | 255 | | | 7 | |
ದೆ | ٤u | 0 | th. | | | | | | | | | | Animal | Donald | Laveeta | Chester | Gromic | Meredith | Bob | Clav | Glory | Shorty | Mel | Kay | Ike | | | | ł | L | | L | | L | <u> </u> | L | L | <u> </u> | | L | ١ | Potentially Pathogenic, Coagulase-Positive Staphylococcus Table 8 -- Continued | | | | | |
 | | |
 |
 | |--|--------|--------|-------|---|------|-------|---|------|------| | Micrococcua ap. | | | × | | | | • | | | | Neisseria | | | | - |
 | | | | | | Gaffkya | | | | | | | | | | | salorae | | × | | | | | | | | | Lactobacillus | × | × | × | | | | | L | | | Fungi Media | | | | | | | | | | | olrdiV | | | | | | | | | | | Gram Positive Rod | | × | | |
 | | | | | | Corynebacteria | | | | | | | | | | | PPLO | | | | | | | | | | | Leptotrichia | | | • | | | | | | | | Pneumococcus | | | | | | ļ
 | | | | | ###################################### | | | | | | | | | | | Staphylococcus | × | × | × | | | | | | | | вус илтрет СW | 172 | 173 | 174 | | | | | | | | Holloman No. | 260 | 194 | 122 | | | | | | | | Animai | Jaylen | Herbie | Sonia | | | | | | | | | Ja | # | တိ | | | | | | | TABLE 8 --- Concluded | sitessie <i>N</i> | | | | | | | | | | | |-------------------|-------|-------|----------|--------|-----------|-------|-------|-------|--------|--------| | Gettkya | | | | | | | | | | | | Sarcina | | | | | | | | | | | | Lactobacillus | X | × | × | × | × | | × | × | × | × | | Fungi Media | | | | | | | | | | | | Vibrio | | | | | | | | | | | | Gram Positive Rod | | | | | | | | | | | | Corynebacteria | × | x | × | × | | X | X | × | | | | PPLO | | | | | | ' | | | | | | Leptotrichia | | | ٠ | | | | | | | | | Preumococcus | | | | | | | | | | | | Haemophilus | | | | x | | | | | × | | | Staphylococcus | | | x | *X | | × | | × | | × | | вус ултрет | Man 1 | Man 2 | Man 3 | Man 4 | Man 5 | Man 6 | Man 7 | Man 8 | Man 9 | Man 10 | | Holloman No. | | | | | | | | | | | | | | | | H | п | | | | H | u | | Handler | Boone | Teal | Vegl | Taylor | C. Barton | Boone | Teal | Vegl | Taylor | Barton | | H | ij. | æ. | % | ¥. | ပ် | i | B. | я. | Ą. | ರ | * Potentially pathogenic, mannitol salt positive TABLE 9. TYPES OF FUNGI ISOLATED | Animal Name | Holloman
Designation | RAC
Designation | Candida sp. | C. albicans | C. tropicallis | Geotrichum
candidum | Trichosporou sp. | Yeast | Miscellaneous | |-------------|-------------------------|--------------------|-------------|-------------|----------------|------------------------|------------------|-------|---------------| | Susan | 202 | CF101 | | | | | X | | | | Clayton | 130 | CF111 | | | | | | х | | | Shirley | 116 | CF112 | | x | | | | | • | | Zazsa | 143 | CF114 | | X | | · | | | | | Possum | 169 | CF120 | | | | | | X | | | Dearl | 226 | CF121 | | x | | | | | | | Andy | 225 | CF122 | | ·X | x | | | | | | Tina | 244 | CF127 | | x | | | - | | | | Chester | 245 | CF128 | | x | | | | | | | Brian | 229 | CF129 | | x | | | | | | | Andy | 225 | CF130 | | X | | | | | | | Floyd | 239 | CF134 | | x | | | | | | | Bob | 233 | CF139 | | x | | | | | | | Chester | 245 | CF150 | | X | | | | | | | Gromic | 234 | CF151 | Х | | | | | | | | Meredith | 235 | CF152 | | х | | | | | | | Glory | 237 | CF155 | x | | | | | | | | Mel | 236 | CF157 | X. | | | | | | | Table 9 -- Continued | Animal Name | Holloman
Designation | RAC
Designation | Candida sp. | C. albicans | C. tropicallis | Geotrichum
candidum | Trichosporon sp. | Yeast | Miscellaneous | |-------------|-------------------------|--------------------|-------------|-------------|---|------------------------|------------------|-------|---------------| | Denise (b) | 145 | CW5 | | | | | | | | | Denise (b) | 145 | CW17 | | | | | | | | | Denise (b) | 145 | CW28 | | | | | | | | | Denise (b) | 145 | CW48 | | | | _ | | X | | | Denise (b) | 145 | CW49 | | | | | | | | | Denise (b) | 145 | CW63 | | - | | | | х | | | Denise (b) | 145 | CW76 | | • | X | | | | | | Denise (b) | 145 | CW90 | | | | | | X | | | Denise (b) | 145 | CW102 | | | *************************************** | | | | | | Denise (b) | 145 | CW120 | | | | | Х | | | | Denise (b) | 145 | CW122 | | | | | X | | | | Denise (b) | 145 | CW134 | | | | | | | | | Denise (b) | 1 4 5 | CW146 | | | | | х | | | | Denise (b) | 145 | CW161 | X | | | | | | | | Denise (b) | 145 | CW169 | | | | | ., | | | | Demise (c) | 145 | CF126 | | | | · | | | | | Denise (c) | 145 | CF167 | | | | | | | | ⁽b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 ⁽c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 TABLE 9 --- Continued | Animal Name | Holloman
Designation | RAC
Designation | Candida sp. | C. albicans | C. tropicallis | Geotrichum
candidum | Trichosporon sp. | Yeast | Miscellaneous | |-------------|-------------------------|--------------------|-------------|-------------|----------------|------------------------|------------------|-------|---------------| | Donald (b) | 198 | CW11 | | | | | x | | | | Donald (b) | 198 | CW21 | | | - | х | | | | | Donald (b) | 198 | CW32 | | | | х | | | | | Donald (b) | 198 | CW42 | | | | | x | | | | Donald (b) | 19 8 | CW54 | | | | | | | | | Donald (b) | 198 | CW67 | | | х | | | | | | Donald (b) | 198 | CW77 | | | | | Х | s. | | | Donald (b) | 198 | CW94 | | | | | X | | | | Donald (b) | 198 | CW100 | | | | | | Х | | | Donald (b) | 198 | CW114 | | х | | | | | | | Donald (b) | 198 | CW130 | | | | | х | | | | Donald (b) | 198 | CW141 | | | | | | | Graphium sp. | | Donald (b) | 198 | CW150 | | | | | x | | | | Donald (b) | 198 | CW159 | | | | | | | | | Donald (b) | 198 | CW170 | | | | | | | | | Donald (c) | 198 | CF148 | | | | | | | | ⁽b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 ⁽c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 TABLE 9 --- Continued | Animal Name | Holloman
Designation | RAC
Designation | Candida sp. | C. albicans | C. tropicallis | Geotrichum
candidum | Trichosporon sp. | Yeast | Miscellaneous | |----------------------|-------------------------|--------------------|-------------|-------------|----------------|------------------------|------------------|-------|------------------------------------| | Elbys(b) | 117 | CW9 | | | | | | | | | Elbys (b) | 117 | CW24 | | | | х | | | | | Elbys ^(b) | 117 | CW36 | | | | | | | | | Elbys ^(b) | 117 | CW 44 | | | | | | | | | Elbys ^(b) | 117 | CW59 | | | | | Х | | | | Elbys ^(b) | 117 | CW72 | | | | | | x | | | Elbys ^(b) | 117 | CW83 | | | | | х | | | | Elbys ^(b) | 117 | CW95 | | | | | | | | | Elbys (b) | 117 | CW107 | | | | | | | | | Elbys (b) | 117 | CW115 | | | | | | | | | Elbys (b) | 117 | CW129 | | | | | Х | | | | Elbys (b) | 117 | CW139 | | | | | | | Penicillium sp. | | Elbys (b) | 117 | CW 151 | | | | | X | | | | Elbys (b) | 117 | CW160 | | | · | | | | Mold sp. Chromo-
genic (yellow) | | Elbys (b) | 117 | CW171 | X | | | | | | | | Elbys ^(c) | 117 | CF145 | | | | | | | | ⁽b) RAC 1787-5FR, 'The Influence of Diet on the Normal Fecal Flora of the Chimpanzee, "AF29(600)-4555, May 1965 ⁽c) RAC 2544 (quarterly reports), 'Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 TABLE 9 --- Continued | Animal Name | Holloman
Designation | RAC
Designation | Candida sp. | C. albicans | C. tropicallis | Geotrichum
candidum | Trichosporon sp. | Yeast | Miscellaneous | |-----------------------|-------------------------|--------------------|-------------|-------------|----------------|------------------------|------------------|-------|------------------| | Manuel ^(b) | 139 | CW 12 | | | | | | | | | Manuel ^(b) | 139 | CW23 | | | | | | | | | Manuel ^(b) | 139 | CW34 | | | | | x | | | | Manuel ^(b) | 139 | CW43 | | | | x | | | | | Manuel ^(b) | 139 | CW58 | - | | | | | x | | | Manuel ^(b) | 139 | CW65 | | | х | | | | | | Manuel ^(b) | 139 | CW84 | | | | | | x | | | Manuel ^(b) | 139 | CW96 | | | | x | | | | | Manuel ^(b) | 139 | CW108 | | | | | | | | | Manuel ^(b) | 139 | CW118 | | | | | х | | | | Manuel ^(b) | 139 | CW128 | | | | | | | | | Manuel ^(b) | 139 | CW140 | | | | | | | Sporotrichun sp. | | Manuel ^(b) | 139 | CW152 | | | | | | x | | | Manuel ^(b) | 139 | CW163 | | | | | | | · | | Manuel ^(b) | 139 | CW173 | - | | | | | | | | Manuel ^(c) | 139 | CF146 | | | | | | | | ⁽b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 ⁽c) RAC 2544 (quarterly reports), 'Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 TABLE 9 --- Continued | Animal Name | Holloman
Designation | RAC
Designation | Candida sp. | C. albicans | C. tropicallis | Geotrichum
candidum | Trichosporon sp. | Yeast | Miscellaneous | |---------------------|-------------------------|--------------------|---|-------------|----------------|------------------------|------------------|-------|--------------------| | Marc ^(b) | 172 | CW2 | ę. | | х | | | | | | Marc ^(b) | 172 | CW14 | | | | | | | | | Marc ^(b) | 172 | CW26 | | | | | | | | | Marc ^(b) | 172 | CW37 | | | | Х | | | | | Marc ^(b) | 172 | CW56 | | | | | X | | · | | Marc ^(b) | 172 | CW61 | | | | | X | | | | Marc ^(b) | 172 | CW73 | | | х | | | | | | Marc ^(b) | 172 | CW88 | | | | | | | | | Marc(b) | 172 | CW98 | | | | | х | | | | Marc ^(b) | 172 | CW111 | | | | | Х | | | | Marc ^(b) | 172 | CW121 | | | | | х | | | | Marc ^(b) | 172 | CW132 | | | | | | | C. pseudotropicali | | Marc ^(b) | 172 | CW143 | | | | | | | | | Marc ^(b) | 172 | CW153 | - · · · · · · · · · · · · · · · · · · · | | | | | | C.krusei | | Marc ^(b) | 172 | CW164 | | · | | | | | | | Marc ^(c) | 172 | CF125 | | | | | | | | | Marc ^(c) | 172 | CF 166 | | | | | | | | ⁽b) RAC 1787-5FR, 'The Influence
of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 ⁽c) RAC 2544 (quarterly reports), 'Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 TABLE 9 --- Continued | Animal Name | Holloman
Designation | RAC
Designation | Candida sp. | C. albicans | C. tropicallis | Geotrichum
candidum | Trichosporon sp. | Yeast | Miscellaneous | |---------------------|-------------------------|--------------------|-------------|-------------|----------------|------------------------|------------------|-------|---------------| | Mimi ^(b) | 126 | CW3 | | | | х | | | | | Mimi ^(b) | 126 | CW15 | | | X | x | | | | | Mimi ^(b) | 126 | CW29 | | | | | X | | | | Mimi ^(b) | 126 | CW39 | | | x | | | | | | Mimi ^(b) | 126 | CW60 | | | | | X | | | | Mimi ^(b) | 126 | CW71 | | | | X | | | | | Mimi ^(b) | 126 | CW81 | | | | | x | | | | Mimi ^(b) | 126 | CW85 | | | | | | | | | Mimi ^(b) | 126 | CW105 | | | | x | | | | | Mimi ^(b) | 126 | CW109 | | | | | х | | | | Mimi ^(b) | 126 | CW127 | | | | | | | | | Mimi ^(b) | 126 | CW135 | | | | | | | | | Mimi ^(b) | 126 | CW145 | | | | | | | | | Mimi ^(b) | 126 | CW158 | | | | | | | | | Mimi ^(b) | 126 | CW167 | x | | | | | | | | Mimi ^(c) | 126 | CF141 | | | | | | | | | Mimi ^(c) | 126 | CF169 | | | | | | | | ⁽b) RAC 1787-5FR, 'The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 ⁽c) RAC 2544 (quarterly reports), 'Study of the Fecal Bacterial Population of Chimpanzees, "AF29(600)-4991 TABLE 9. --- Continued | Animal Name | Holloman
Designation | RAC
Designation | Candida sp. | C. albicans | C. tropicallis | Geotrichum
candidum | Trichosporon sp. | Yeast | Miscellaneous | |---------------------|-------------------------|--------------------|-------------|-------------|----------------|------------------------|------------------|-------|---------------| | Phil (b) | 174 | CW8 | | | | | x | X* | Black mucoid | | Phil (b) | 174 | CW22 | | | | x | | | ×1 | | Phil (b) | 174 | CW35 | | | | | _ | | | | Phil (b) | 174 | CW 46 | | | | X | | | | | Phil (b) | 174 | CW51 | | | x | | | | | | Phil (b) | 174 | CW69 | | _ | х | | | | | | Phil (b) | 174 | CW80 | | | | | | x | | | Phil (b) | 174 | CW91 | | | | | | x | | | Phil (b) | 174 | CW104 | | | | | | x | | | Phil ^(b) | 174 | CW117 | | | | | X | | | | Phil (b) | 174 | CW125 | | | | | | | | | Phil ^(b) | 174 | CW137 | | | | | | | | | Phil ^(b) | 174 | CW149 | | | | | | | | | Phil ^(b) | 174 | CW155 | x | | | | | | | | Phil (b) | 174 | CW174 | | • | | | | | | | (c)
Phil | 174 | CF147 | | | | | | | | ⁽b) RAC 1787-5FR, 'The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 ⁽c) RAC 2544 (quarterly reports), 'Study of the Fecal Bacterial Population of Chimpanzees, "AF29(600)-4991 TABLE 9 --- Continued | Animal Name | Holloman
Designation | RAC
Designation | Candida sp. | C. albicans | C. tropicallis | Geotrichum
candidum | Trichospores sp. | Yoast | Miscellaneous | |----------------------|-------------------------|--------------------|-------------|-------------|----------------|------------------------|------------------|-------|---------------------------------------| | Sonia ^(b) | 122 | CW4 | | | Х | | | | | | Sonia (b) | 122 | CW16 | | | | х | | | | | Sonia (b) | 122 | CW30 | | | | x | | | | | Sonia (b) | 122 | CW 40 | | | х | | | | | | Sonia (b) | 122 | CW57 | | | | | X | | | | Sonia (b) | 122 | CW70 | | | | | х | | | | Sonia (b) | 122 | CW82 | | | | х | | | | | Sonia (b) | 122 | CW86 | | | | | | | | | Sonia ^(b) | 122 | CW106 | | | | | | | | | Sonia (b) | 122 | CW110 | | | | х | X | | | | Sonia (b) | 122 | CW126 | | | | | | | | | Sonia (b) | 122 | CW136 | | | | | | | | | Sonia (b) | 122 | CW144 | | | | х | | | | | Sonia (b) | 122 | CW157 | | | | | | | C. pseudotropicalis
Alternaria sp. | | Sonia (b) | 122 | CW166 | | | | | | | | | Sonia (c) | 122 | CF142 | | | | | | | | | Sonia (c) | 122 | CF174 | | | | | l | | | ⁽b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 ⁽c) RAC 2544 (quarterly reports), 'Study of the Fecal Bacterial Population of Chimpanzees, "AF29(600)-4991 TABLE 9 --- Concluded | Animal Name | Holloman
Designation | RAC
Designation | Candida sp. | C. albicans | C. tropicallis | Geotrichum
candidum | Trichosporon sp. | Yeast | Miscellaneous | |-----------------------|-------------------------|--------------------|-------------|-------------|----------------|------------------------|------------------|-------|---------------| | Richie ^(c) | 231 | CF 123 | | | | | | | | | Richie ^(c) | 231 | CF131 | | | | | | | | | Richie ^(c) | 231 | C -9A | Shorty ^(c) | 238 | CF140 | | | | | | | | | Shorty ^(c) | 238 | CF156 | - | • | • | | | | | ⁽c) RAC 2544 (quarterly reports), 'Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 TABLE 9 --- Continued | Animal Name | Holloman
Designation | RAC
Designation | Candida sp. | C. albicans | C. tropicallis | Geotrichum
candidum | Trichosporon sp. | Yeast | Miscellaneous | |----------------------|-------------------------|--------------------|-------------|-------------|----------------|------------------------|------------------|------------|--| | Randy ^(b) | 170 | CN1 | ! | | x | · | | x * | *Black mucoid | | Randy ^(b) | 170 | CN13 | | | | | | | | | Randy ^(b) | 170 | CN25 | | | | | | | | | Randy ^(b) | 170 | CN38 | | | | X | | | | | Randy ^(b) | 170 | CN55 | | | x | | | | | | Randy ^(b) | 170 | CN62 | | | | | | x | | | Randy ^(b) | 170 | CN74 | | | x | | x | | | | Randy (b) | 170 | CN87 | | | | | | X | | | Randy ^(b) | 170 | CN97 | | | | | х | | | | Randy ^(b) | 170 | CN112 | | х | | | | | | | Randy ^(b) | 170 | CN120a | | | | | | | | | Randy ^(b) | 170 | CN131 | | | | ÷. | | | C. pseudotropicalis | | Randy (b) | 170 | CN142 | | | | | x | | | | Randy ^(b) | 170 | CN154 | | | | | | | Penicillium sp. | | Randy ^(b) | 170 | CN 165 | | | | | | | | | Randy ^(c) | 170 | CF143 | | | | | | | | | Randy ^(c) | 170 | CF162 | | | | | | | T. mentagraphytes
var enterdigetale | ⁽b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 ⁽c) RAC 2544 (quarterly reports), 'Study of the Fecal Bacterial Population of Chimpanzees, "AF29(600)-4991 TABLE 9 --- Concluded | Animal Name | Holloman
Designation | RAC
Designation | Candida sp. | C. albicans | C. tropicallis | Geotrichum
candidum | Trichosporon sp. | Yeast | Miscellaneous | |-------------|-------------------------|--------------------|------------------|-------------|----------------|------------------------|------------------|-------|--------------------------------------| | Ike | 255 | CF159 | X | | | | | | | | May | 257 | CF160 | X | | | | | | | | Randy | 170 | CF162 | | | | | | | T. mentagraphyter var. enterdigetale | | Walter | 169 | CF168 | | | | | | | Penicillium sp. Actinomyces sp. | | Betty | 203 | C-1A | х | | | | | | | | Fay | 254 | C-3A | | х | | | | | | | Angie | 162 | C-4A | Х | • | | | | | Penicillium sp. | | Pepe | 252 | C-5A | Х | | | | | | | | Kenny | 275 | C-7A | , , , , | | | | | | C. krusei | | Dearl | 226 | C-8A | | х | | | | | | | Lorreine | 273 | C-10A | X | | | | | | | | Andy | 225 | C-12A | · - · | | | | | х | | | Brian | 229 | C-13A | | | | | | х | | | Snoopy | 272 | C-14A | X | | | | | | | | Dick | 110 | C-15A | X | | | | | | Penicillium sp. | | Cary | 183 | C-18A | | | | | | x | | | Fay | 254 | C-22A | | х | | | | | | TABLE 9 --- Continued | Animal Name | Holloman
Designation | RAC
Designation | Candida sp. | C. albicans | C. tropicallis | Geotrichum
candidum | Trichosporon sp. | Yeast | Miscellaneous | |--------------------|-------------------------|--------------------|-------------|-------------|----------------|------------------------|------------------|-------|---------------| | Red ^(b) | 158 | CW6 | | | | | | | | | Red ^(b) | 158 | CW19 | | | | x | | | | | Red ^(b) | 158 | CW27 | | | | х | | | | | Red ^(b) | 158 | CW47 | | | | x | | | | | Red ^(b) | 158 | CW50 | | | , | | х | | | | Red ^(b) | 158 | CW64 | | | | | х | | | | Red ^(b) | 158 | CW75 | | | | | | | | | Red ^(b) | 158 | CW89 | | | | | | | | | Red ^(b) | 158 | CW101 | | | | | | | | | Red ^(b) | 158 | CW119 | | | | | | | | | Red ^(b) | 158 | CW123 | | | | | | | | | Red ^(b) | 158 | CW133 | X | | | | | | | | Red ^(b) | 158 | CW147 | | | | | X | | | | Red ^(b) | 158 | CW162 | | | | | | | | | Red ^(b) | 158 | CW168 | | · | | | | | | | Red ^(c) | 158 | CF 163 | | | | | | | | ⁽b) RAC 1787-5FR, 'The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 ⁽c) RAC 2544 (quarterly reports), 'Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 TABLE 9 --- Continued | Animal Name | Holloman
Designation | RAC
Designation | Candida sp. | C. albicans | C. tropicallis | Geotrichum
candidum | Trichosporon sp. | Yeast | Miscellaneous | |------------------------|-------------------------|--------------------|-------------|-------------|----------------|------------------------|------------------|-------|---------------| | Andy(c) | 225 | CF122 | | | x | | | | | | Andy ^(c) | 225 | CF130 | | x | | | | | | | Andy ^(c) | 225 | C-12A | | | | | | x | | | | | | | | | | | | | | Bob ^(c) | 233 | CF139 | | X | | | | | | | Bob(c) | 233 | CF153 | | | | | | | | | Brian (c) | 229 | CF124 | | • | | | | | | | Brian (c) | 229 | CF129 | : | x | | | | | | | Brian (c) | 229 | C-13A | | | | | | х | | | Chester ^(c) | 245 | CF 128 | | X | | | | | | | Chester ^(c) | 245 | CF150 | | x | | | | | | | Clay
^(c) | 246 | CF133 | | | | | | | | | Clay ^(c) | 246 | CF154 | | | | | | | | ⁽c) RAC 2544 (quarterly reports), 'Study of the Fecal Bacterial Population of Chimpanzees, "AF29(600)-4991 TABLE 9 --- Continued | Animal Name | Holloman
Designation | RAC
Designation | Candida sp. | C. albicans | C. tropicallis | Geotrichum
candidum | Trichosporos sp. | Yeast | Miscellaneous | |-----------------------|-------------------------|--------------------|-------------|-------------|----------------|------------------------|------------------|-------|---------------| | Dearl ^(c) | 226 | CF121 | | x | | | | | | | Dearl ^(c) | 226 | CF132 | | | | | | | | | Dearl ^(c) | 226 | C-8A | | х | | | | | | | Fay ^(c) | 254 | C-3A | | x | | · | | | | | Fay ^(c) | 254 | C-22A | | х | | | | | | | Floyd ^(c) | 239 | CF134 | | x | | | | | | | Floyd ^(C) | 239 | CF170 | | | | | | | | | Glory ^(c) | 237 | CF138 | | | | · | | | | | Glory ^(c) | 237 | CF155 | Х | | | | | | | | Gromic ^(c) | 234 | CF136 | | | | | | | | | Gromic ^(c) | 234 | CF151 | х | | | | | | | ⁽c) RAC 2544 (quarterly reports), 'Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 Table 9 -- Concluded | Animal Name | Holloman
Designation | RAC
Designation | Candida sp. | C. albicans | C. tropicallis | Geotrichum
candidum | Trichosporon sp. | Yeast | Miscellaneous | |-------------------------|-------------------------|--------------------|-------------|-------------|----------------|------------------------|------------------|---------------------------------------|---------------| | Jerry ^(c) | 243 | CF144 | | | | | | | · | | Jerry ^(c) | 243 | CF165 | | | | | | | | | Laveeta (c) | 190 | CF149 | | | | | | | | | Laveeta (c) | 190 | CF164 | | | | · | | | | | Mel (c) | 236 | CF137 | | | | | | | | | Mel ^(c) | 236 | CF157 | х | | | | | | | | Meredith ^(c) | 235 | CF135 | | | | | | | | | Meredith ^(c) | 235 | CF152 | | х | | | | | | | Pepe ^(c) | 252 | C -5A | X | | | | - | · · · · · · · · · · · · · · · · · · · | | | Pepe (c) | 252 | C-21A | | | | | | | - | | | | | | | | | | | | ⁽c) RAC 2544 (quarterly reports), 'Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 TABLE 10. COMPARISON OF GRAM NEGATIVE BACILLI RECOVERED FROM FECES | | .oN namol | C Number | sileita | reyed | ilnegrom | vulgaria | siliderim | tregiter | ctertum
Litratum | sanomobue | saligenes | smim-sliexer | fnia | Tobacter | resus | gella | lmonella | | , | |-----------------|-------------------|---|----------------|-----------------|----------|----------------|------------------|--|---|---|--|------------------------|--|--|---------------|--------------|---------------------|---------------------|--| | Animal | [OH | ВA | КЈ | la U | Д | Proteus | ene | - 4 | αA | | | | | | | | | | Escherichia | | Andy (c) | 225 | CF122 | × | | | × | | | | | | | | | × | | | coli | | | Andy (c) | 225 | CF130 | | | | | × | × | | | | | | | | | | coli | | | Andy (c) | 225 | C-12A | | H. H. | | | | | | | | | | | | | | | | | 14. | | | | | | | | | | | | | | | - | | | | | | Annie (8) | 167 | 9-U | | × | | | | | | | | | - | | | ļ | | Beta
negat | Beta Hemolytic rod unidentified gm
negative coli * | | Annie (c) | 167 | _ | | | | | | + | | | | | | ~ | × | | | coli | Betty (a) | 203 | C-22 | × | × | | | | × | | | | | | | | | | coli 1 | coli Poly II | | Betty (a) | 203 | | × | | × | | × | † | | × | | | | | × | | | coli | | | Betty (a) | 203 | 3 C-43 | × | | × | × | × | | | | | | | | × | | | | | | Betty (a) | 203 | 3 C-61 | | | | | | | | | | | | -+ | × | \dashv | | | | | Betty (c) | 203 | 3 C-1A | | | | | | | | | | | | | | | | | | | * Ind
** See | licates
3 Tabl | Indicates possible pathogenicity
See Table for pattern description | le pa
patte | thoge
srn de | nici | ripti
Tipti | (a)
on
(c) | | RAC 1095-5FR,
AF29(600)-4124,
RAC 2544 (quart
AF29(600)-4991 | 1095-5FR,
(600)-4124
2544 (quar
(600)-4991 | FR, 1124, uarte 991 | "Stud
Dec.
rly 1 | C 1095-5FR, ''Study of Bacterial Flora
29(600)-4124, Dec. 1964
C 2544 (quarterly reports), ''Study of th
29(600)-4991 | | rial
'Stud | Flor
y of | a of the
the Fec | he Alim
ecal Bac | erial Flora of the Alimentary Tract of Chimpanzees, 'Study of the Fecal Bacterial Population of Chimpanze' | 110 Table 10 -- Continued | | | T | 1 | т | · · · · | | | | , | , | | · | 10.00 | 4 79 | | |---|-------------------------|--------------|-----------|-----------|-----------|---|-------------|---------|--------------|--------------|-----------|-----------|-------|--|------------| | | Escherichia | coli Poly II | coli | coli | coli | , | coli | coli | | coli | coli | | | 5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," 4124, Dec. 1964 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," | | | | Alkalenacena
Diapar | | | | | | | *× | | | | | | entar | | | | Salmondis | | | | | | | | | | | | | Alim
1 Ba | | | | Shigella | | | | | | | | | | | | | the Fecs | | | | Serratia | AX | | | | | | | | | | | | ra of
f the | | | | Aerobacter | | | × | | | | × | | | × | | | l Flo | | | | Providence | | | | | | | | | | | | | erla
"Stu | | | | alniaH | | | × | | | | | | ļ | | | | Bact
14
rts), | | | | amim-silexeroM | | | | | | | | | | | | | ly of B
1964
report | | | | Alcaligenes | | | | | | | | | | | | | "Study
Dec.
erly re | | | | Pseudomonas | | | | | | ļ | | | | | | | 5FR,
-4124,
(quart | -4991 | | | Bacterium
Antitratum | | | | | | | | | | | | | | 00)-4 | | | rettgeri | | | | | | | | | | | | | RAC 1095-
AF29(600)
RAC 2544 | A F29(600) | | - | arragiuv 5 | | | | | | | | | | | | | 1 | A | | ŀ | ilnagrom by Saria | | | | | | | | | | 3 | | | (a) | | | t | Ликеуед | | | | | | | | | | X | | | | | | Ì | Klebsiella | | , | · | | | | | | | | | | type | | | | выс Митрег | C-24 | C-46 | C-69 | CF116 | | CF139 | CF153 | | CF124 | CF129 | C-13A | | ate serc | | | | Holloman No. | 85 | 85 | 85 | 85 | | 233 | 233 | : | 229 | 229 | 229 | | indic
ariet | | | | Antmal | Billy (a) | Billy (a) | Billy (a) | Billy (c) | | Bob (c) | Bob (c) | | Brian (c) | Brian (c) | Brian (c) | | Letters A-G indicate serotype
** Motile variety | | | Animal | Holloman No. | RAC Number | Klebatella | Norey | ilnagrom o | ehraghy 5
elidarim 2 | allidarim g | Bacterium
Autitratum | Pseudomonas | Alcaligenes | Moraxella-mima | slalsH | Providence | Aerobacter
Serrada | | Shigella
Salmonella | Escherichia | |-------------|--------------|--------------------|------------|--------------|------------|-------------------------|-------------|-------------------------|---------------|---------------|----------------|----------|-------------|-----------------------|----------|------------------------|--| | Cary (a) | 183 | C-25 | × | | | | | × | | | | | | Α× | | | Poly I and II 0111: B4
coli Poly II 0125: B15, 0128: B12 | | Cary (a) | 183 | C-40 | | | | | | | | | | | | | | | coli | | Cary (a) | 183 | C-45 | | | | | × | | | | | | | | | | coli | | Cary (c) | 183 | C-18A | | | | | | | | | | | _ | | \dashv | | | | | | | - | | | | | | | | | | | | | | | | Chester (c) | 245 | CF128 | | | | (g)X | | | | | | | | | | | coli | | Chester (c) | | CF150 | | | | | | | | | | | ^ | × | | | coli | | | | | | | | | | | | | | | - | | | | | | Clay (c) | 246 | CF133 | | | | | | | | | | | | × | \dashv | | coli | | Clay (c) | 246 | CF154 | | | ř | | × | _ | | | | + | \dashv | | \dashv | _ | coli | | | | | | _ | | | | | | | | | | | | _ | | | Dearl (c) | 226 | CF121 | | | | | | | | | | | | × | <u> </u> | Poly
+ B | coli | | Dearl (c) | 226 | CF132 | | | | | × | | | | | | | | _ | \dashv | coli | | Dearl (c) | 226 | C-8A | | F* | | | | | | | | + | _ | \dashv | | | coli, no type | | | | | | | | | | | | | | | _ | | | | | | Letters A | thru G | indicate serotypes | se se | rotyp | es | | (a) | i | RAC 1095-5FR, | -5FR
-4124 | _ | udy of B | f Bac
64 | teria | l Fj | ora of | "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," Dec. 1964 | Letters A thru G indicate serotypes + = Alkalescens dispar for pattern differentiation (d) Proteus sp * See Table <u> ၁</u> AF29(600)-4124, Dec. 1964 RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzee AF29(600)-4991 Table 10 -- Continued | 145 145 125 2 2 2 2 2 2 2 2 2 | | | |
 | | | | | | | | | | | | | |--|--------------|---------------------|--------|--------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------------------| | (c) (a) (b) (b) (c) (c) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | Escherichia | coli Poly I 055: B3 | | coli – | .
coli - no | | | | | coli - | ! | coli - | | 1 | | 9(600)-4124, Dec. 1964 | | (c) (a) (b) (b) (c) (c) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | Salmonella | | | | | | | × | | | | | | | | A F2 | | (c) (a) (b) (b) (c) (c) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | Shigella | | | | | | | | | | | | | | | 68.11 | | (c) (a) (b) (b) (c) (c) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | Serrada | | | | | | | | | | | | | | | anze | | (c) (a) (b) (b) (c) (c) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | | | | | | | | | | | × | | | | | himp | | (c) (a) (b) (b) (c) (c) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | Providence | | | | | _ | | | | × | | | | | | of | | (c) (a) (b) (b) (c) (c) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | skrish | × | | | | | | | | | | | | | | ract | | (c) (a) (b) (b) (c) (c) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | | | | | | | | | | | | | | | | T 2 | | (c) (a) (b) (b) (c) (c) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | Alcaligenes | | | | | | | | | | | | | | | enta | | (c) (a) (b) (b) (c) (c) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | Pseudomonas | | | | | | | | | | | | | | | Alim | | (c) (a) (b) (b) (c) (c) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | | | | | | | | | | | | | | | | f tho | | (c) (d) (e) (e) (e) (e) (e) (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f | | | | | | | | | | | | | | | | | | (c) (a) (b) (b) (c) (b) (c) (c) (a) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | alliderim | × | | | | | | | | | | | | | | | | (a) (b) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | lingyrom of | | | | | | | | | × | × | × | | | | 0 | | (a) (b) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | | × | | | × | × | | | | | | | | | | Door | | (a) (b) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | · | | | | | | | | | | | | | | | A. 0.6 | | Animal Holloman Animal Holloman Debbie (a) 204 Debbie (b) 145 Denise | тәфший ЭАЯ | C-21 | C-20A | CW- | 17 | 28 | 48 | 49 | 63 | 92 | 06 | 102 | 120 | 122 | 134 | • | | Animal Debbie (a) Debbie (b) Denise | Holloman No. | 204 | 204 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 100 | | Antin Debbic Debbic Denisc | 7 | (a) | (0) | | | ı | | | | | | | 1 | | | | | | Anim | Debbie | Debbie | Denise | Denise | Denise | Denise | Dentse | Denise | Denis(| Denise | Denise | Denise | Denise | Denise | 11/ | (a) RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 (b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 | Escherichia | E. coli; Bethesda-Ballerup | E. coli | E. coli | E. coli; Aurescens | coli | coli | coli | | E. coli - no type | E. coli - no type | | | coli, Poly A&B (coli, Poly B 086 | E. coli; Poly B - no serotype
E. coli Poly B, 086; B7 | | "194. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | |-------------------------|----------------------------|------------|------------|--------------------|------------|------------|------------|---|-------------------|-------------------|------------|------------|----------------------------------|--|------------|--| | Salmonella | | | | | | | | | | | | | | | | Д ₩ | | Shigella | | | | | | | | | | | | | | | | = 00 | | Serrada | | | | | | | | | | | | | | | | 9 u c | | Tetobscter | | | | | × | | | | | × | | × | | | × | , m | | Providence | | | | | | | | | | | | | | | | <u>ا</u> ح | | slalsH | | | | | | | | | | × | | | | | <u> </u> | 100 | | Moraxella-mima | | | | | | | | | | | | | | | | F | | Alcaligenes | | | | | | | | i | | | | | | | | 1 | | Pseudomonas | | | | | | | | | | | | | | | | 1 2 2 | | Bacterium
Antitratum | | | | | | | | | | | | | | | | 444 | | rettgeri | | | | | | | | | | | | | | | | | | altigatim g | | - | | | | | | ļ | | | | | | - | ļ | │ | | tinggrom & | | | | | | | | | × | | | | | - | ├─ | 1 | | Onkeyed | | | × | | | | | | × | | | | | | | 1 | | Klebatella | | <u> </u> | l '` | | | × | | - | _ | | X | | | - | | 1 | | | | | | | 8 | | 29 | | | | | | | - | +- | | | тэфший ОАЯ | CW
146 | 161 | 169 | C-4 | C-12 | CF126 | CF167 | | CW- | 21 | 32 | 42 | 54 | ├ | } | .] | | Holloman No. | 145 | 145 | 145 | 145 | 145 | 145 | 145 | | 198 | 198 | 198 | 198 | 198 | 198 | 198 | | | Animal | Denise (b) | Denise (b) | Denise (b) | Denise (a) | Denise (a) | Denise (c) | Denise (c) | | Donald (b) | Donald (b) | Donald (b) | Donald (b) | Dona 1d (b) | Donald (b) | Donald (b) | | RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 <u>@</u>@ Table 10 -- Continued | | olloman No. | тәфший ОАЯ | Clebatella | Onkeyed | Hasyrom o | altaginy aliderim | allidenim g | multatium
mutatitium | sendomonas | Alcaligenes | smim-silexeroW | sinisi | Providence | Aerobacter | Serrada | pigeila | silmonelis. | Escherichia | | |------------|-------------|------------|------------|---------|-----------|-------------------|-------------|-------------------------|------------|-------------|----------------|--------|------------|------------|----------|---------|-------------|------------------------------|---| | (q) | [, | -Mo | | | | | | | | , | | | | | | | ; × | | | | Donald (2) | 198 | 100 | 1 | + | + | + | + | - | | | | 1 | | - | 1 | } | + | | | | Donald (b) | 198 | 114 | | 1 | 1 | - | | | | | | | | | | | | E. coll; Arizona-Citrobacter | | | Donald (b) | 198 | 130 | | | - | <u> </u> | | | | | | | | | | | | | | | Donald (b) | 198 | 141 | | | | | | • | | | | | | | | | | | | | Donald (b) | 198 | 150 | | | | | | | | | | | | | | | | | | | Donald (b) | 198 | 159 | | | | | | | | | | | | | | | | | T | | Donald (b) | 198 | 170 | | | | | | | | | | | | | | | | E. coli | | | Donald (c) | | CF148 | | | | | | | × | | | | | | | | | coli | | | | 1 | | | | | | | | | | | | | | | - | | | | | Fibvs (b) | 117 | -MO | | | × | | | | | | | | | × | | × | | Poly B - no type | | | Elbys (b) | 117 | 24 | | | | | | | | | | | | | | | | E. coli - no type | | | Elbys (b) | 117 | 36 | | | | | | | | | | | _ | | \dashv | | | E. coli - Poly A | | | Elbys (b) | 117 | 44 | | | | | | | | | | | | | | | | E. coli | | | Elbvs (b) | 117 | 59 | | | | | | | | | | | | | | | | E. coli, Poly B 086:B7 | | | 2 1 22 2 | | |] : |], | ۱ | 1 | | 12.5 | | | Ē | 4 | 1,1 | 7 | 1 | 1 | A TOO | 1290/200_4555 May 1965 | | (b) RAC 1787-5FR, "The influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 Table 10 -- Continued | Escherichia | E. coli - no type
E. coli, Poly B 086; B7 | E. coli | E. coli | E. coli - no type | E. coli; Poly B 0119; B14 | E. coli | E. coli | E. coli | E. coli | E. coli | coli | | |-------------------------|--|-----------|-----------|-------------------|---------------------------|--------------|-----------|--|--|-----------|-----------|--| | Salmonella | × | | | | | | <u> </u> | | | | | | | Shigella | | | | | | | | | | | | | | Serratia | | | | | | | <u> </u> | | | | | | | Aerobacter | | | | | | | | | | | | | | Providence | | | | | | | | | | | | | | sinisH | | | | | | | | | | | | | | amim-allexeroM | | | | | | | | | | | | | | Alcaligenes | | | | | | | | | | | | | | Pseudomonas | | | | | | | | | | | | | | Bacterium
Antitratum | | | | | | | | | | | | | | rettgeri | | | | | | | | | | | | | | altaginy § | | | | | | | | - | | <u> </u> | _ | | | morganii 5 | × | | | <u> </u> | | | | × | | | | | | Onkeyed | | | × | | | | | | | | | | | Klebsiells | | | ļ | | | | | | | | | | | RAC Number | CW- | 83 | 95 | 107 | 115 | 129 | 139 | 151 | 160 | 171 | CF145 | | | .ov namolloH | 117 | 117 | 117 | 117 | 117 | | + | | | 117 | 1 | | | Animal | Elbys (b) | Elbys (b) | Elbys (b) | Elbvs (b) | Elbvs (b) | Films (b) | Elbys (b) | F.lbvs (b) | Elbys (b) | Elbys (b) | Fibva (c) | | (b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 Table 10 -- Continued | | | | |
 | |
 | |
 | |
 | | | | |---|------------------------|---------------|---------------|-------------|-----------|----------|----------|-----------|-----------|------------|------------|---|-------------------| | | Escherichia | coli, no type | coli, no type | coli | coli | coli | coli | | coli | coli | coli | | | | | Salmomias | | | | X | | | | ΧX | | | | | | | Shigella | | | Poly
A X | | | | | | | | | | | | Serratia | | | | | | | | | | | | | | | Aerobacter | | | | ٠ | | × | × | × | × | × | | | | L | Providence | | | | | | | | | | | | | | L | alalaH | | | | | | | | | | | | | | | Amim-sliexeroM | | | | | | | | | | | | | | | Alcaligenes | | | | | | | | | | | | | | | Pseudomonas | | | | | | | | | | | • | | | | Baotertum
muteratum | | | | | | | | | | | | | | | retigeri | | | | | | | | | | | | | | - | atraginy § | | |
× | | | × | × | × | | | | | | - | the morganii | | × | | × | | | | |
 | | | $\left\{ \right.$ | | - | | | | | | X | | | | | | | 1 | | - | Unkeyed | | | | | × | | | | | | - | 1 | | - | Klebetella | | æ | 4 | 0 | | 4 |
00 | נט |
 | - | | - | | | ВАС Митрек | C-3A | C-22A | CF134 | CF170 | C-28 | CF104 | CF138 | CF155 | CF136 | CF151 | | | | | Holloman No. | 254 | 254 | 239 | 239 |
155 | 155 | 237 | 237 | 234 | 234 | _ | | | |
Animal | Fay (c) | Fay (c) | Floyd (c) | Floyd (c) | Gigi (a) | Gien (c) | Glory (c) | Glory (c) | Gromic (c) | Gromic (c) | | | (a) RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1965 (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 | Escherichia | coli | coli Poly A055;B5 | | coli | | * Unidentified beta hemolytic coll,
gm negative rod | coli | | coli | coli Poly B 0124. B17, Poly B | coli Poly B | coli | | coli | | | Tract of Chimpanzees," AF29(600)-4124, Dec. 1964. Population of Chimpanzees," AF29(600)-4991 | |-------------------------|--------------|-------------------|---------|----------|---|--|--|---|-----------|-------------------------------|-------------|-------|---|--|----------|------------------------------------|---| | Salmonelia | | | | | | | | | | | | | | | |] ! | AF2
es," | | Shigella | | | | | | | | | | | | | | | | <u> </u> | es,"
anze | | Serratia | × | | | | | | | | | _ | | | | | - | | anze
himp | | Aerobacter | | × | | × | | | | | × | × | _ | | | | | - | himp
of C | | Providence | | | | | | | | | | | | | | - | | _ | of Cl
ttion | | slalaH | | | | | | × | | | | | | | | | <u> </u> | - | ract
opula | | Moraxella-mima | <u> </u> | | | | | | | | | | | | | _ | _ | | ry T | | Alcaligenes | | | | | | | | | | | | | | | | | the Alimentary
Fecal Bacterial | | Pseudomonas | | | | | | | | | | | | | | | _ | | Alim
1 Bac | | Bacterium
muteriliaA | | | | | | | | | | | | | | | _ | | | | rettgeri | | | | | | | ļ | | | × | | | | | — | 4 | erial Flora of | | altagluv 5 | _ | | | L | _ | | × | _ | | | | | | <u> </u> | + | 4 | .1 Fl | | morganti
S vulgaria | - | | | | | × | ├ | - | | × | | | - | | +- | \dashv \Box | eria
''Sta | | Nukeyed | - | | | | | +~ | | - | × | | | | | \dagger | + | nicit | Bactrts), | | Klebstella | | × | | | | | | | × | × | | • | | | +- | hoge | ly of
repo | | | | ╁ | | 02 | | - | 17 | - | + | | 6 | 103 | - | + | 5,5 | 16 <u>3</u> | "Stac
rly | | төфший ОАЯ | C-31 | C-47 | C-58 | CF102 | | C-10 | CF117 | | C-30 | C-48 | C-59 | CF103 | | 1 6 | CF144 | CF165 | FR,
uarte | | Holloman No. | 197 | 197 | 197 | 197 | | 157 | | | 187 | 187 | 187 | 187 | | 3 | 243 | 243 | 095-5
544 (q | | Animal | (Suv (a) | Guv (a) | Guy (a) | (Jun (c) | | Howard (a) | Howard (c) | | Janet (a) | Janet (a) | Janet (a) | (c) | | (o) | Jerry | * Indicates nossible nathogenicity | 20 | Indicates possible pathogenicity RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 Table 10 -- Continued | _ | | | | | | | | |
 | |
 | | |---|-------------------------|-------------|-------|---|-------------------------------|------------|------|------------|--------------------|----------|------|---| | | Escherichia | | | | coli Poly A, Poly B - no type | coli | | coli | coli Poly B 086:B7 | | | Alimentary Tract of Chimpanzees." AF29(600)-4124, Dec. 1964 | | | silenomis2 | | | ` | | | | × | | | | A F29 | | | Shigelia | | | | | | | | | | | = 8 | | | Serratia | | | | | | | | | | | an ve | | | Aerobacter | | | | | | | × | | × | | - juni | | | Providence | | | | | | | | | | | 15 | | | ainiaH | | | | | | | | | | | 10 8 | | | amim-silexeroM | | | | | | | | | | | £ | | | Alcaligenes | | | ` | | | | | | | | refar | | | Pseudomonas | | | | | | _ | | | | | I m | | | Bacterium
Antitratum | | | • | | | | | | | | Flore of the A | | | rettgeri | | | | | | | | | | | | | | atraginy 5 stilldarim 3 | | | | | | | | × | × | | 16 | | | morganii | × | | | × | | | | × | | | 1 5 | | | Unkeyed | × | | | ^ | | | | | | | | | | Klebstella | | | | | | | | | |
 | %
 | | | кьс интрег | CF149 | CF164 | | C-33 | C-52 | C-56 | CF105 | C-65 | CF106 | | The History of Doctonial | | | Holloman No. | 190 | | | 199 | 199 | | 199 | 217 | † | | | | | Animal | Laveeta (c) | (2) | | Lennie (a) | Lennie (a) | (a) | Lennie (a) | Linnus (a) | (၁) | | 4 1 100 t D A G (1) | (a) RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 Table 10 -- Continued | | | | | | | | | | | | | P8; | | | i
i | | • | |-------------------------|---------------------------|-------------------|----------|------------|--------|------------------|------------------|---------|-----------------------------|------------------------------|----------|---|-------------------------|----------|---------|----------|---------------------------| | Escherichia | E. coli, Poly B - no type | E. coli - no type | | E. coli | | | E, coli | E. coli | E. coli: 0127:B8 - 0124 B17 | E. coll; Arizona-Citrobacter | | E. coll; Poly A 011:B4; 0127:B8;
Poly B 0126;B16 | E. coli: Poly B 086: B7 | | E, coli | E. coli | A TROOVERON JEEE May 1965 | | Silenomis | | | | | × | | | × | | × | \dashv | | | | | | ¥ = | | Shigella | × | | | | | | | | | | | | | | | | | | Serrata | | | | | | | | | | | | | | | | _ | 100 | | Aerobacter | | | | | | | | | | | | | | | | | | | Providence | | | | | | | | | | | | | | | | | 17. | | sintaH | | | | | | | | | | | | | | | | | | | Moraxella-mima | | | | | | | | | | | | | | | | | i | | Alcaligenes | | | | | | | | | | | | | | | | | | | Pseudomonas | X | | | | | | | | | | | | × | | × | × | 1 | | Becterium
muteratina | | | | | | | | | | | | | | | | | | | rettgeri | | | | | | | | | | | | | | | | | | | alliderim | | | × | | | | | | | | | | | | | × | | | Morganii S | × | × | X | | × | | | × | | | | | × | | | <u> </u> | | | Unkeyed | × | × | | | X | ·
 | | × | × | | | | | | | | | | Klebatella | | | | | X | | | - 1 | , , | | | | | | | | 1 | | | 2 | 23 | 34 | 43 | 58 | 65 | 84 | 96 | 8 | ω , | 80 | 0: | - 52 | , ii | 173 | 94 | | | RAC Number | CW12 | | | | | | | | 108 | 118 | 128 | 140 | 152 | <u> </u> | | ۲ | | | Holloman No. | 139 | 139 | 139 | 139 | 139 | 139 | 139 | 139 | 139 | 139 | 139 | 139 | 139 | 139 | 139 | 130 | 2 | | ਬ | (q) | (q) 1 | ② | @ 1 | (q) | (q) ¹ | (q) ¹ | (q) 1 | (q) 1 | (q) 1 | (q) 1 | (Q) | @ _ | 9 | (Q) | <u> </u> | | | Animal | Manuel Mannel | | Mailuci | (b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 Table 10 -- Continued (b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 | Escherichia | E. coli | E. coli | coli Poly I & II 0127; B8 and 0128; B12 | coli | coli | | coli Poly B; coli | coli | | coli | | coli | coli | | AF29(600)-4124, Dec. 1964 | |------------------------|----------|----------|---|------------|----------|---|-------------------|-----------|----------|---------|---------|-------------|-------------|---|---| | Salmomias | | | | | | | | | | | | | | | A F2 | | Shigella | | | | | | | | | | | |
 | | | 1.89 | | Serratia | | | | | | | | | - | | |
 | | | ınze | | Aerobacter | | | | | | | | × | | | × | | | | imi | | Providence | | | | | | | | | | | |
 | | | CP | | alalaH | | | | | | _ | | | | | | | | | acto | | mim-silexeroM | | | X | • | | | | | | | | | | | Į. | | Alcaligenes | | | | | | | | | | | | | | | ntar | | Pseudomonas | | | × | | | | | | | | | | | | lime | | mutratina
mutratina | | | | | | | | | | | | | | | f the Alimentary Tract of Chimpanzees." | | rettgeri | | | | | | | | | | | | | | | ° | | alragiuv S ellidarim | | | | | | | | | | × | × | × | | | 1 5 | | No series | <u> </u> | | | | | | | ļ | <u> </u> | · | | | | - | - F | | morganii | | | | | | | | | | | | | | _ | 1 2 | | Onkeyed | - | | × | | | | | | | | | | | - | ┨; | | Klebatella | | | | | | | | | - | | |
 | - 67 | | "ICE, dr. of Bootenial Flora | | тәфти ОАЯ | CW153 | CW164 | C-19 |
 CF125 | | | C-67 | 196 CF100 | | CF137 | CF157 | CF135 | CF152 | | | | Holloman No. | 172 | 172 | 172 | 172 | 172 | | 196 | 196 | | 236 | 236 | 235 | 1 | | | | Animal | Marc (b) | Marc (b) | Marc (a) | Marc (c) | Marc (c) | | Marty (a) | Marty (c) | | Mel (c) | Mel (c) | Meredith(c) | Moredith(C) | | 1000 | RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF23(600)-4124, Dec. 1304 RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 <u>@</u>@ Table 10 -- Continued | • | Escherichia | Е. соц В | E. coli - no type | E. coli | E. coli - Poly B
E. coli - Poly B 0124:B17 | E. coli - no type | E. coli Poly B 086: B7 | E. coli - no type | E. coli | | E. coll; Arizona-Citrobacter | E. coli; Poly A0126; B16;
Poly B 011; B4 | E. coli | | |---|-------------------------|----------|-------------------|----------|---|-------------------|------------------------|-------------------|----------|----------|------------------------------|---|----------|---| | | sliedomis? | | | | | | × | | × | | Poly
O | | | | | | Shigelia | × | | | | | | | | | | | | : | | | Serratia | | - | | | | | | | | | | | | | | Aerobacter | × | | | × | | × | | | | X | | | , | | | Providence | | | | | | | | | | | | | ٠ | | ' | alnieH | | | | | | | | | | | X | | • | | | amim-silexeroM | | | | | | | | | | |
| | 1 | | | Alcaligenes | × | | | | | | | | | | | | • | | | Pseudomonas | | | | | | | | | | | | | , | | | multestoed
muteritha | | | | <u>'</u> | | | | | | | | | 1 | | | rettgeri | | | | | | | | | | | | | • | | | elinginy S | | | M | | | | | × | | | | | | | | Magrom o | | × | <u>×</u> | | | | × | × | × | | | | • | | | Unkeyed | | | | | | | | × | | | | | | | İ | Klebetella | | | × | | | × | | | | | | | 1 | | | ВАС Иштьег | CW 3 | 15 | . 53 | 39 | 09 | 71 | 81 | 85 | 105 | 109 | 127 | 135 | 1 | | | Holloman No. | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | | | | Animal | Mimi (b) | (b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 | Escherichia | E. coli | E. coli | E. coli | coli | coli | coli | coli | | | | | 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964
1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965
2544 (2013) transfer to the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 | |-------------------------|----------|----------|----------|----------|----------|-----------|-----------|-----------|--------------|----------|-------------|---| | Salmonella | _ | | | | | | | | | | | AF29 | | Shigelia | <u> </u> | | | | | | | | | | | s, "
zee, | | Serratia | _ | | | | | | | | _ | | | nzee
pan | | Aerobacter | | | | | | | | | | | | impa
Chin
Chin | | Providence | | | | | | | | | | | | f Ch | | sinisH | | | | | | × | | | | | | act o
act o | | Moraxella-mima | | | | | | | | | | | | y Tr:
Flor | | Alcaligenes | | | | | | | | | | | | ntar
ecal | | Pseudomonas | | | | | | | | | | | | lime
nal F
Bact | | Bacterium
Antitratum | | | | | | | | | | | | the Alimentary Tract of Chimpanzees,"
e Normal Fecal Flora of the Chimpanzee,
Fecal Bacterial Population of Chimpanze | | rettgeri | 1 | <u> </u> | | | |
 | <u>-</u> | | | | | ora of | | alragluv 5 | × | | | | | | | | | | | Diet | | linagrom or | | <u> </u> | - | | |
 | | | | | | eria
of 1 | | Onkeyed | | | | | | | | | | | | Bact | | Klebatella | | | · · · | | | × | × | | | | | ly of Influence | | тефширет | CW145 | CW158 | CW167 | CF141 | CF169 |
C-26 | C-44 | C-19A | | C-5A | C-21A | RAC 1095-5FR, "Study of Bacterial Flora of t
RAC 1787-5FR, "The Influence of Diet on the | | Holloman No. | 93 | | 126 | | 126 | 211 | | 211 | | 252 | | 95-5F | | Animal | Mimi (b) | Mimi (b) | Mimi (b) | Mimi (c) | Mimi (c) | Oscar (a) | Oscar (a) | Oscar (c) | | Pepe (c) | Pepe (c) | AC | Table 10 -- Continued | | | | | | _ | , | | | | | | | | | |---------|-------------------------|----------|----------|----------|----------|-------------------------|----------|------------------------------------|----------|----------|--------------|----------|----------|-------------------------------------| | | Escherichia | | | E. coli | | E. coli; Poly B 086; B7 | | E. coli 086: B7, E. coli - no type | E. coli | | E. coli | E. coli | E. coli | AF29(600)-4555, May 1965 | | | Selmonella | | | | | | | | | | | | | AF2 | | | Shigella | | | | | | | | | | | | | Chimpanzee," | | | Serratia | | | | | | | | | | | | | panz | | | Aerobacter | | | | | | | | × | | | | | Chim | | | Providence | | | | | | · | | | | | | | the | | | alalaH | | | | | | | | | | | | | Fecal Flora of the | | | Morexella- | | | | | | | | | | | | | Flor | | | Alcaligener | | | | | | | | | | | | | Feca | | | Pseudomon | | × | | | | × | × | | | | × | | ormal 1 | | | mutrettan
mutertitan | | | | | | | | | | | | | Nor | | | rettg | | | | | | | | | | | | | n the | | | rylor of mira | | | | | | | | | | | | | eto | | | norg | | · | | | | | | | | | | | of Di | | | Unkeyed | | | | | | | | | × | | | | ence | | | Klebsiella | | | | × | | | | | | | | | Influ | | er. | RAC Numb | CW 8 | 22 | 35 | 46 | 51 | 69 | 80 | 91 | 104 | 117 | 125 | 137 | 3, "The Influence of Diet on the No | | .oN | namolloH | 174 | 174 | 174 | 174 | 174 | 174 | 174 | 174 | 174 | 174 | 174 | 174 | 7-5FF | | | Animai | Phil (b) (b) RAC 1787-5FR, | 125 Table 10 -- Continued | Escherichia | | | E. coli | coli
coli Poly I – no type | coli | coli Poly B | | coli | coli | coli Poly B; coli | coli | | | |-------------------------|----------|------------|----------|-------------------------------|----------|-------------|---------|------------|------------|-------------------|------------|--------------|-------------------------------------| | Salmonella | | | | | | | | | | | | | | | Shigella | | | | | | | | X | | | | | | | Serratia | | | | | | | | X | | | | | | | Aerobacter | | | | × | | | | A
X | XC | | × | | | | Providence | | | | | | | | | | | | | | | sinisii | | | | | | | | | × | | | | | | Moraxella-mima | | | | × | | | | | × | | | | | | Alcaligenes | | | | | | | | X | | | | | | | Pseudomonas | X | X | × | | X | | | X | | X | | | | | Beoterium
muteriliaA | | | | | | | | | | | | | | | rettgeri | | | | | | | | | | | | | | | alragiuv § | | | | | | | | × | | | | | | | A ANIESTIS | | | | | | | |
 | | X | |
<u> </u> | 4 | | linsgrom | | | | | | | |
× | | | |
<u> </u> | - Be | | Dukeyed | | | | | | | |
× | | | | | | | Klebatella | | | | × | | | | | | | | | Rer | | тәфший ЭАЯ | CW149 | CW155 | CW174 | C-15 | CF147 | C-66 | CF109 | C-2 | C-14 | C-64 | CF120 | | indicate | | Holloman No. | 174 | 174 | | 174 | 174 | 218 | | 169 | | _ | | |]
]
[| | Animel | (q) II4d | (b) II (d) | (b) IIId | Phil (a) | Phil (c) | Pop (a) | (c) Pop | Possum (a) | Possum (a) | Possum (a) | Possum (c) | | Tottors A thmi G indicate serotypes | Letters A thru G indicate serotypes (a) RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 (b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 Table 10 -- Continued (b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 Table 10 -- Continued | Escherichia | coli Poly I 111: B4 aurescens | coli - no type | coli | coli | | | E. coli; Poly B 0128:B12 | | | E. coli | | E. coli - no type | E. coli Poly A&B 111: B4; 0126: B16 | E. coli - no type | | A E90/6001-4194 The 1964 | |------------------------|-------------------------------|----------------|-----------|-----------|-----|----------|--------------------------|----------|---------|---------|---------|-------------------|-------------------------------------|-------------------|----------|---| | Salmonella | | XQ | | | | | | | | | | | | | | | | Shigella | | | | | | | | | | | × | | | | | - 00 | | Serratia | υ
U | | | | | | | | | | | | | | | 1 0 | | Aerobacter | Ϋ́Υ | × | | | | × | | | × | | × | | | | | 1.4 | | Providence | | | | | | | | | | | | | | | | [
 7 | | sinisH | | | | | | | | | | | | | | | | 1 5 | | Moraxella-mima | | | | | | | | | | | | | | | ļ | - F | | Alcaligenes | | | | | | | | | | | | | | | | 1 5 | | Pseudomonas | | | | × | | | | | | | | | | | | 1 | | Bacterium
muteratum | | | | | | | | | | | | | | | | of the Aliments my Tree of Chimnengees 11 | | rettgeri | | | | | | | | | | | | | | | | S | | aliderim 3 | | | | | | | | <u> </u> | | | | <u> </u> | | | ├- | - 6 | | Morganii | | <u> </u> | | | · - | | | | | | | | | - | | - 19 | | Unkeyed | | | | - | | | × | <u> </u> | | | - | | | _ | \vdash | 16 | | Klebatella | | | | <u> </u> | | \vdash | | - | | × | × | | | | | 18 | | | | | 43 | 62 | l – | 9 | 19 | 27 | 47 | | | ├ | 68 | 1 5 | 110 | ist.dr. of Bootonial Flores | | тәфший ЭАЯ | C3 | C-20 | CF143 | CF162 | | CW | | | | | | | | | 1 | 1 | | Holloman No. | 170 | | | 170 | | 158 | 158 | 158 | 158 | 158 | 158 | 158 | 7 5 | 1 2 | 1 100 | loct l | | Animal | Randy (a) | Randy (a) | Randy (c) | Randy (c) | | Red (b) (q) Fod | (q) | (q) | Ked | RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 | | | | 1 | T | T | T | T | T | T | T - | Υ | | · | 7 | |-----------|-------------------------|----------|---------|----------------------------|---------|---------|---------|---------|---------|-----|-------------|------------|----------|------------------------| | ., | Escherichia | E. coli | E. coli | E. coli: Bethesda-Ballerun | | E. coli | | coli - | соП | | coli | coli | | | | | Salmonella | | | | | | | | | | × | × | | | | | Shigelia | | | | | | | | | | Poly
+ B | | |] | | | Serratia | <u> </u> | | | | | | | | | | | | | | inue | TelosedoreA | | × | | | | | | | | × | × | | | | Continued | Providence | | | | | | | | | | | | | 1 description | | - | aintaH | | | | | | | | | | | | |] ' | | Table 10 | amim-silexeroM | | | | | | × | | | | | | | g | | Tab | Alcaligenes | | | | | | × | | | | | | | ptto | | | Pseudomonas | | | | · | | | | | | | | × | escr | | | Becterfum
Antitratum | | | | | | | | | | | | | for pattern d | | | rettgeri | | | | | | | | | | | | | r pat | | - | atraginy S atilidarim | | | | | | | | | | × | | | ĝ, | | - | linagrom of | | | | | | | - | | | × | | | | | | Unkeyed | | | | | | | | | | | | *
D,B | * See Table | | | Klebatella | | × | • | | | × | × | | | × | | | * | | | RAC Number | CW123 | 133 | 147 | 162 | 168 | C-7 | C-13 | CF163 | | CF123 | CF131 | -9A | par *
See Table | | | Holloman No. | 158 | 158 | 158 | 158 | 158 | 158 | 158 C | 158 C | | 231 C | 231 C | 231 C-9A | ns dis | | | Animal | Red (b) | Red (b) | Red (b) | Red (b) | Red (b) | Red (a) | Red (a) | Red (c) | | Richie (c) | Richie (c) | | + = alkalescens dispar | | _ | | | | - | 129 | | | | H | | 141 | <u> </u> | 14 | 4 | (a) RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 (b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial December 2011. RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 | Dispar
Escherichia | Poly II 0128:B12 | coli Poly B 0128;B12 | coli | | coli | | | , | E. coli - no type | E. coli | E. coli | E. coli - no type | | E. coli | E. coli | ochrome oxidase negative " A moseson 4194 Pos 1964 | |-------------------------|------------------|----------------------|-------------|---------|------------|------------|---|-----------|-------------------|-----------|-----------|-------------------|-----------|-----------|------------|--| | Alkalescens | | | | | <u> </u> | * × | | | | | | | | | | 3000 | | silenomis | | × | | | | | | | | | | | | | | [| | Shigella | | | | | | | | | | | | | | | | | | Serratia | | | | | | | | | | | | | | | | | | Aerobacter | | | | | | | | × | | | × | | × | | × | | | Providence | j: | | | | | | | · | | | | | | | | o K | | alalaH | | | | | | | | | | | | | | | | egati | | Moraxella-mima | | | | | | | | | | | | | | | | ge n | | Alcaligenes | X | | | | | | | | | | | | | | | xi da | | Pseudomonas | × | | | | | | | | × | | - | | | | | me | | Bacterfum
Antitratum | | | | | | | | | | | | | | | | rochro | | rettgeri | | | | | | | | | | | | | | | | alk, cytr | | alragiuv S allidarium | | | | | | | | | | × | | × | | × | | alk, | | N vulgaria | | | | | ļ | | ļ | ļ | | | | | | | | 붉 | | lineston | | | X | | | _ | | ļ | | | | | | | | *** alk/ | | Unkeyed | | | | <u></u> | | * × | _ | | × | | X | | | | × | * | | Klepateila | × | × | | | | | | | | | | | × | | |] | | тефший ЭАЯ | C-16 | C-41 | CF112 | | CF140 | | | CW 4 | 16 | 30 | 40 | 57 | 70 | | | | | .oN namolioH | 116 | | 116 | | 238 | 238 | | 122 | 122 | 122 | 122 | 122 | 122 | 122 | 192 | varie | | Animal | Shirley (a) | Shirley (a) | Shirley (c) | | Shorty (c) | Shorty (c) | | Sonia (b) | Sonia (b) | (d) gonia | Sonia (b) | Somia (b) | Sonta (b) | Sonta (b) | Som ta (b) | ** Motile variety | <u>a</u>@0 RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 130 Table 10 -- Continued | | L | | | | | t | f | } | } | - | ŀ | | | ĺ | | | | | |---|--------------------------------------|--------------------------------|-------------------------|------------------------|--|---------------|----------------|-------------------------|---------------|----------------------------|----------------|---|--------------|------------|----------------|----------|-------------|--| | Antmal | Holloman No. | вас Митрет | Klebatella | Unkeyed | Hangrom y | alraginy 5 | | Becterlum | Antitratum | Pseudomonas
Alcaligenes | Amim-sliexeroM | sinish | Providence | TetoadoreA | alterraß | Shigella | allenomia | Escherichia | | Sonia (b) | 122 | CW-
106 | | × | | | <u> </u> | - | | - | - | - | ╂— | ↓× | - | | <u> </u> × | E. coli – no tune | | Sonia (b) | 122 | 110 | | | | | | - | - | - | - | | | × | | | × | coli; | | Sonia (b) | 122 | 126 | | | × | | | - | | | + | | <u> </u> | | - | | | | | Sonia (b) | 122 | 136 | | | <u> </u> | - | | - | - | | - | | | | | | | 1 | | Sonia (b) | 122 | 144 | | | | - | <u> </u> | - | | | | — | | × | | | × | • | | Sonia (b) | 122 | 157 | | | | | | ļ | | 1 | - | | - | | 1 | | | E. coli | | Sonia (b) | 122 | 166 | × | × | | - | - | | | | - | | | × | | | × | 1 | | Sonia (a) | 122 | 8 0 | | | 1- | ┼ | - | - | - | - | | | | Ο× | | | | | | Sonia (a) | 122 | C-11 | | × | × | × | 1.2 | <u> </u> | × | | × | | | | | | | coli, E. coli, Poly I 0111:B4, | | Sonia (c) | 122 | CF142 | | | × | <u> </u> | | - | - | <u> </u> | | <u> </u> | | | | | | 10.016, | | Sonia (c) | 122 | CF174 | | | + | - | - | | - | | <u> </u> | | | | | | | coli | | | | | | | | | | | | <u> </u> | | | | | | | | | | Letters A-G indicate serotypes (a) RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary (b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial | indics
95-5F]
7-5FI
14 (qua | te sero
R, "Stuc
R, "The | types
fy of
Influ | Bact
lence
'ts), | erial
of D | Flo
Met of | ra o
on the | if the
ne No
Fec: | Alime
rmal | intari
Fecal | | Tract of Chimpanzees," . Flora of the Chimpanzee, | Chi
the | Chin | nzeeg
npanz | ee," A | F29(
AF2 | BEAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600), 4655. | RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," AF29(600)-4555, May 1965 RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 Table 10 -- Continued | | Escherichia | coli*, Poly I 0111:B4 | coli, Poly B 086:B7, Poly B | coli | | coli, Poly II 126:B16 | coli | | | | | | | | |----------------|------------------------|-----------------------|-----------------------------|----------|----------|-----------------------|------|--------------|---|--------------|----|----|----------------|------------| | . Bil | Salmone | | | | | | × | | 1 | | - | - | ↓ — | - | | | Shigella | | | | | | | - | ļ | - | - | - | +- | - | | | Serratia | | | | | | | - | | | - | - | +- | 4 | | 19: | Aerobaci | | | × | | × | | <u> </u> | - | - | +- | - | - | 4 | | 90 | Providen | <u> </u> | | | | | | | - | | - | +- | | - | | | alniaH | <u> </u> | | | | | | ļ | - | | | +- | + | - | | amim-a | Moraxell | <u> </u> | <u> </u> | | | × | ļ | <u> </u> | - | - | - | - | +- | 4 | | 891 | Alcaligen | | <u> </u> | | | | ļ | | - | | - | + | _ | _ | | Sanc | Pseudom | | | | | | - | _ | | | | | +- | 4 | | | Bacterfur
Antitratu | | <u> </u> | | | | | | | - | _ | | | _ | | get. | | | | <u> </u> | | ļ | × | - | + | _ | + | _ | _ | \dashv | | ailida | | <u> </u> | - | | | | × | - | + | | | | _ | 寸. | | linsy:
alts | | - | +- | | <u> </u> | +- | + | + | + | + | 1 | | + | | | | Unkeyed | - | - | | | 1 | | | | | | | | <u>]</u> : | | - | Klebatella | | + | | | | | | | | | | | | | | RAC Num | C-5 | C-63 | 1 | | 6-2 | | | | | | | | | | .oV | namolloH | 149 | 149 | 149 | | 168 | 1 69 | 3 | | | | _ | _ | | | | Animal | Van (a) | Van (a) | Van (c) | | Wolter (a) | (c) | Walter | | | | | | | * Indicates possible pathogenicity (a) RAC 1095-5FR, "Study of Bacteria Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 (c) RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees," AF29(600)-4991 Table 10 -- Continued | Klebetella | 225 | Lady Bird 274 C-11A | Lorreine 273 C-10A | Richie 231 C-9A | 226 C-8A | Kenny 275 C-7A | Penny 276 C-6A | 252 C-5A | 162 C-4A | 254 C-3A | 261 C-2A | 203 C-1A | Holloman No. |
--|--|---------------------|--------------------|-----------------|---------------|----------------|--------------------|----------|----------|---------------|----------|----------|----------------| | Moravalla Mora | | 1.4 | 0 A | A | A | Ą | Y. | Y. | ¥ | V | Ą | A | Klebstells | | X X X X X X X X X X | B,C
H,E | * | | n,B | ¥. | | | | | | | | Unkeyed | | Moreatium Aintental Ainten | | | | | | | | | | | | | ilnagrom o | | Tettgerf Bacterlum Antitratum Antitratum Antitratum Alcaligence A | | ļ | | | | | | | × | | | | S vulgarias | | Bectertum A thirtiene Peaudomonae Peaudomonae Alcaligenee Moraxella-mima Membratiae Hainia Hainia Acrobacter Serretta Serretta Serretta Coll Col | - | | × | | | | | | | | | | | | Alcaligenes Moraxeila-mima Hainia Hainia Hainia Hainia Providence Setratia Shigelia Salmonella Oli Oli Oli Oli Oli Oli Oli | | | | | | | | | | | | | | | Morexella-mima Heinia Heinia Heinia Providence Aerobacter Serretta Shigella Salmonella Coll. Oli. Oli. Oli. Oryp | | | | × | × | | | | | | | | Pseudomonas | | Hainta Ha | | | | | | | | | | | | | Alcaligenes | | Providence Aerobacter Serratia Shigelia Salmonella Coli, no typ Otyp | 1 | | | | | | | | | | | | amim-silexaroM | | Serratia Serratia Serratia Coli, no typ of t | | | | | | | | | | | | | | | Shigelia Salmonelia Coli, no typ Coli, no typ Coli, no typ | - | | | | | | | | | | | | | | Salmonella Coli, no typ Coli, no typ Coli, no typ | - | | | | | | | | | | | | | | Salmonella Coli, no typ coli, no typ coli, no typ | <u> </u> | | | | | | | | | | | | | | coli, no typ coli, no typ coli, no typ | - | | | | | | | | | | | | | | | | | coli, no type | | coli, no type | | coli, no type | | | coli, no type | | | Escherich | | | | | | | | | | , | | | | | | * See Table 12 for pattern differentiation * See Table 12 for pattern differentiation TABLE 10 --- Continued | Escherichia | | coli, no type | coli, no type | coli, no type | | coli, no type | coli, no type | coli, Poly B, no further type | | | |--------------------------|----------|---------------|---------------|---------------|-----------|---------------|---------------|-------------------------------|------------|-----------| | slienomis? | | | | | | | | | | | | Shigelia | | | | | | | | | | | | Serratia | | | | | | | | | | | | TetosedoraA | | | X | × | | | | | × | | | Providence | | | | | | | | | | | | ainlaH | | | | | | | | | | | | amim-silexatoM | , | | | | | | | | | | | Alcaligenes | | | | | | | | | | | | Pseudomonas | | | | | | | | | | | | Bacterium
muteratum | e | | | | | | | | | | | rettgeri | | | | | | | | | | | | atraguv S
atliderim § | | | | | | | | | | | | ilnagrom of alraginy | | | | × | | | | | | | | Unkeyed | | | *ა | * | | | | | K* | | | Klebatella | | | | | | | | | - | | | төфший ЭАЯ | Man 1 | Man 2 | Man 3 | Man 4 | Man 5 | Man 6 | Man 7 | Man 8 | Man 9 | Man 10 | | Holloman No. | ď | A | N | V | 4 | N. | A | N | ~ i | 2 | | Handlers | L. Boone | B. Teal | R. Vegl | A. Taylor | C. Barton | L. Boone | B. Teal | R. Vegl | A. Taylor | C. Barton | * See Table 12 for pattern differentiation | Escherichis | СОШ | Coli | Coli | Coli | Coli | Coli | | СоШ | Coli | | Coli | Coli | | | | |-------------------------|-------|-------|------|-------|------|--------|-------|----------|------|-----|------|---------|---|--------------|--------------| | Salmonella | | | | | | | | | | | | | | | | | Shigella | | | | | | × | | | | | | | | - | | | Serrada | | | | | | | | | | | | | | | | | Aerobacter | × | × | × | | × | × | × | | | | × | | | | | | Providence | | | | | | | | | | | | | | | | | alnisH | | | | | | | | | | | | | | | | | Moraxella-mima | | | | | | | | | | | | | | | | | Alcaligenes | | | | • | | | | | | | | | | ļ | | | Pseudomonas | | | | | | | | | | | | | | | | | mulretosa
mularitina | | | | | | | | | | | | | | - | | | rettgeri | | | | | | | | | | | | | | | | | alizatim g | | | | | × | | × | | × | | | | | | | | morganii
S vulgaria | | | | | , | | | × | × | | | | - | - | | | Unkeyed | | | | | | | | ~ | | | | | | - | | | Klebetella | | | | | | | | | | | | | - | | | | -11-1-17 | | | | | | | | . | | | | | _ | | | | дедшту Суд | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | | | | | Holloman No. | 196 | 202 | 197 | 187 | 155 | 199 | 217 | 232 | 136 | 218 | 149 | 130 | | | | | Animal | Marty | Susan | Guv | Janet | Gigi | Lennie | Linus | Rosie | Hope | Pop | Van | Clayton | | | | Table 10 -- Continued | | | | | | | | | | | | | | |
 | | |-------------------------|---------|------|-------|------|-------|--------|-------|--------------|--------|------------|-------|---------|------------|------|---------------| | Escherichia | Coli Coli; Poly B | Coli | Сой | СоЦ | Coli | Coli | | | | Salmonella | | | | | | | | × | | | | × | | | 1 | | Shigella | | | | | | | | | | Poly
+B | | 5 th | | | | | Serrada | | | | | | | | | | | | | | | | | Aerobacter | | | × | | | | × | | × | × | × | × | | | | | Providence | | | | | | | | | | | | | | | | | alniaH | | | | | | | | | | | | | | | | | amim-allexeroM | | | | | | | | | | | | | | | | | Alcaligenes | | | | | | | | | | | | | | | | | Pseudomonas | | | | | | | | | | | | | | | | | mutretoed
muteriliaA | | | | | | | | | | | | | | | | | retigeri | | | | | | | | | | | | | | | brack | | alraginy S alliderim | | × | | | | × | | × | | | | × | | | 4 | | linegrom of | × | ^ | _ | _ | | | | × | | | × | × | - <u>-</u> | | $\frac{1}{2}$ | | Unkeyed | | | | | | | | | | | | | | | 1 | | Klebatella | | | | | | | | | | | × | × | | | 1 | | ямс Митрет | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | | 1 | | Holloman No. | 116 | 114 | 143 | 101 | 85 | 157 | 167 | 224 | 169 | 226 | 225 | 231 | 229 | | | | Animal | Shirley | Rufe | Zazsa | Roy | Billy | Howard | Annie | *Freda | Possum | *Dearl | *Andy | *Richie | *Brian | | | | Escherichia | coli | coli | coli | .coli | coli | coli | |--------------------------|------|--------|------|---------|-------|------|--------|-------|------|-------|----------|--------|------|-------|------| | Salmonella | | | | | | | × | | | | | | | | | | Shigella | | | | | | | | | | ** | | | | | | | Serratia | | | | | | | | | | | | | | | | | Aerobacter | | | | | × | | × | | × | | | × | | × | | | Providence | | | | | | | | | | | | | | | | | sinisH | | | | | | | | | | | | | | _ | | | Moraxella-mima | | | | | | | | | | | | | _ | | | | Alcaligenes | | | | | | | | | | | | | | | | | Pseudomonas | | | | | | | | | | | | | | |] | | Bacterium
muteritinA | | | | | | | | | | | | | | | | | retigeri | | | | | | × | | | | | | | | | | | Straguv 5
eliklerim 2 | | | × | ★. | | × | | × | | × | × | | × | × | | | y vulgaria | | | | ×X | | | | | | | | | | | | | linegrom | | | | | X | | | | | | | | | | | | Unkeyed | | | | | | _ | | | | | | | | | | | Klebatella | | × | | | | | - | | | | | | | | | | ТАС Митрет | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 1 | | Holloman No. | 192 | 145 | 244 | 245 | 229 | 225 | 231 | 226 | 246 | 239 | 235 | 234 | 236 | 237 | 233 | | Animal | Marc | Denise | Tina | Chester | Brian | Andv | Richie | Dearl | Clay | Flovd | Meredith | Gromic | Mel | Glorw | Bob | * From sp Table 10 -- Continued | | Escherichia | coli | coli | coli | соЦ | coli | coli | coli | coli | coli | | | | | | | | |------------|------------------------|--------|------|-------|-------|-------|-------|--------|------|--------|---------|----------|---|----------|---|----------|---| | | Salmonella | | | | | | | | | | | | | | | | | | | Shigella | | | | | | | | | | | | | | | | | | <u>,</u> [| Serrada | | | | | | | | | | | | | | | | | | | TetosedoraA | | | | | | | | | | | | | | | | | | | Providence | | | | | | , | | | | | | | | | | | | | alniaH | | | | | | | | | | | | | | | | | | Table 10 | amim-allexaroM | | | | | | | · | | | | | | | | | | | 1 |
Alcaligenes | | | | | | | | | | | | | | | | | | Ī | Pseudomonas | | | | | | | × | X | X | | | | | | | | | | Bactertum
muteratum | | | | | | | | | | | | | | | | | | | tregiter | | | | | | | | | | | | | | | | | | | altaglav 5 | | | | | | | | | | | | | <u> </u> | | | | | | oragaria Š | | | × | | | | × | | | × | | | | ļ | | - | | | llnegrom | | | | | | | | | | × | <u> </u> | _ | <u> </u> | | ļ | - | | | Unkeyed | | | | | | | | | | | | | | | <u> </u> | 4 | | | Klebetella | | | | | • | | | | | | | | | | <u> </u> | | | | тефитрет | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | | | | | | | | | Holloman No. | 238 | 126 | 122 | 170 | 243 | 117 | 139 | 174 | 198 | 190 | | | | | | | | | Animal | Shorty | Mimi | Sonia | Randy | Jerry | Elbvs | Manuel | Phil | Donald | Laveeta | | | | | | | | Escherichia | coli | coli | coli | coli | coli | 100 | COT | coli | | | |-------------------------|---------|--------|----------|------|----------|------|------------|--------------|---|-------------|------------|----------|--------------|--------------|------|-------------|---------| | Alkalenscens
Dispar | | | | **X | | | **X | | | | | | | | | | | | Salmonella | | | | | | *× | | | | | | | | | | | _ | | Shigella | | | | | | | | | | | | | _ | - | | | 4 | | Serrada | | | | | | | | | | | _ | _ | ↓_ | 1 | | | 4 | | Aerobacter | × | × | | × | | × | | × | | × | × | <u> </u> | 4 | 4 | | | 4 | | Providence | | | | | | | | | | _ | _ | | - | \downarrow | | _ | - | | sintali | | | | | | | | | | | <u> </u> | <u> </u> | _ | - | | <u> </u> | _ | | Moraxella-mima | | | | | | | ļ | | | - | | - | ┦- | \downarrow | | _ | _ | | Alosligenes | | | | | | | <u> </u> | ļ | _ | _ | | _ | \downarrow | \downarrow | | _ | 4 | | Pseudomonas | | | | | | | ļ. <u></u> | <u> </u> | | > | () | 4 | <u> </u> | × | | <u> </u> | _ | | multatosa
mutaritinA | | | | | | | ļ
 | | | | | | _ | | | | | | retigeri | | | | | <u> </u> | _ | _ | | - | ┼ | | - | - | - | | ╀ | 4 | | atiasiuv § | - | | | | × | * | - | * | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | - | + | ╁╴ | ╁ | - | | + | - | | tinagrom o | | | | | | | | | + | - | +; | × | × | | | | | | Unkeyed | | | | | | | ** | | | | ; | × | | | | | | | Klebatella | | | | | | | | | | | | | | | | | | | жьс Митрет | 150 | 151 | 152 | 153 | 164 | 10. | CC | 00 7 | 761 | 158 | 129 | 160 | 191 | 162 | 169 | 103 | 164 | | Holloman No. | 245 | 234 | 235 | 233 | 0.46 | 0 20 | 630 | 007 | 230 | 258 | 255 | 257 | 256 | 170 | , i | 8c1 | 190 | | Animal | Chester | Gromic | Meredith | Poh | 200 | | GIOTA | Shorty | Wer | Kav | Ike | May | Henry | Randy | | Red | Laveeta | * * * * * * Vi Motile variety Alk/Alk, Cytochrome oxidase negative | | Escherichia | | coli | coli | | | | | | | |-----------|-------------------------|----------|------|--------|--------|----------|--------|---------|----------|----------|-------|----------|---|----------|----------|----------|---| | | Alkalenacena
Diapar | | | | | | | | | | | | | | | | | | | Salmonella | | | | × | | × | | | | | | | | | | | | | Shigella | | | | | | | | | *X | | | | | | | | | , | Serratia | | | | | | | | | | | | | | | _ | | | nomer man | Tetobacter | | | | | | | | | × | | | | | | | | | | Providence | | | | | | | , | | | | | | | | | | | | sintaH | | | | | | | | | | | | | | | | | | 3 | Amim-aliaxaroM | | | | | | | | | | | | | | | | | | A COLOR | Alcaligenes | | | | | | | | | | | | | | | | | | | Pseudomonas | · | | | | | | | | | | | | | | | | | | Bactertum
Antitratum | | | | | | | | | | | | | | | | | | | rettgeri | _ | | | × | | | | | | | | | <u> </u> | | | | | | Strangerier Strains | | | | | | | | | | | | | <u> </u> | <u> </u> | <u> </u> | 1 | | | Nation S | | | | × | | × | × | × | | | | ↓ | ļ | <u> </u> | <u> </u> | - | | | linegrom H | | | | | <u> </u> | ļ | | × | × | | <u> </u> | | _ | <u> </u> | - | ┨ | | | Unkeyed | <i>;</i> | | | | | | | | <u> </u> | ļ | | | | | <u> </u> | | | | Klebetella | | | | | | | | | | | | | | | | | | | на Митрет | 165 | 166 | 167 | 188 | 169 | 170 | 171 | <u> </u> | | | | | | | | | | | .oN namolioH | 243 | 172 | 145 | 1 60 | 126 | 930 | 259 | 260 | 194 | 122 | | | | | | | | | Animal | Jerry | Marc | Denise | Walton | Mimi | Flourd | Francia | Taylon | Herbie | Sonia | | | | | | | Table 10 -- Concluded TABLE 11. ENTEROPATHOGENIC STRAINS OF E. COLI ANTIGENS* | O (Somatic) | K (Sheath Envelope or Capsular | |-------------|--------------------------------| | 26 | B6 | | 55 | B 5 | | 86 | B7 | | 111 | B4 (E. coli neapolitanum) | | 112 | B11 (S. guanabara) | | 119 | B14 | | 124 | B17 | | 125 | B15 | | 126 | B16 | | 127 | B8 | | 128 | B12 | ^{*}Taken from "Clinical Diagnosis by Laboratory Methods," Edited by I. Davidshon and B. Wells, W. B. Saunders Company, Philadelphia, 1962, 13th Edition. TABLE 12. PATTERN DIFFERENTIATION | Phenylalanine | | 1 | 1 | 1 | + | | I | 1 | | • | + | |---------------------|-----------|----------|-----------|-----------|--------------------------|-----------|-----------|--------------------------|----------------|-----------|-----------| | TSI | a/a + gas | a/H_2S | a/a + gas | a/a + gas | a/H ₂ S + gas | a/a + gas | a/a + gas | a/H ₂ S + gas | $a/H_2S + gas$ | a/a + gas | a/a + gas | | Motility | - | + | • | + | + | + | + | l | + | ı | + | | Nitrate | + | + | + | + | + | + | + | + | + | + | + | | Urease | ŧ | 1 | ı | - | ١ | ı | 1 | 1 | ı | + | ı | | Simmon's
Citrate | + | + | + | + | + | + | + | 1 | • | + | + | | Voges-
Proskauer | + | - | + | + | ı | + | + | 1 | ı | + | 1 | | Methyl
Red | + | + | 1 | #1 | + | + | 1 | + | + | 1 | + | | Indol | + | + | + | + | + | + | + | + | + | + | + | | Pattern | Ą | # B | Ö | α | ·
· | ᅜ | უ | H | I | J | *** K | Indol + Citrobacter Proteus inconstans Providence TABLE 13 MYCOBACTERIA (Ziehl-Nielson Identification of Cultures) | Animal
Name | Holloman
Designation | RAD
Designation | Typical | Atypical | Absent | |----------------|-------------------------|--------------------|---------|----------|----------| | | | | | | | | Betty | 203 | C-1 | | x | | | Sara | 261 | C-2 | | x | | | Fay | 254 | C-3 | | x | | | Angie | 162 | C-4 | | | х | | Pepe | 252 | C-5 | x | | | | Penny | 276 | C-6 | | x | | | Kenny | 275 | C-7 | | | x | | Dearl | 226 | C-8 | | | x | | Richie | 231 | C-9 | x | x | | | Lorreine | 273 | C-10 | | x | | | Lady Bird | 274 | C-11 | | x | | | Andy | 225 | C-12 | | x | | | Brian | 229 | · C-13 | | | x | | Snoopy | 272 | C-14 | | | . | | Dick | 110 | C-15 | | x | | | Karen | 177 | C-16 | | x | | | Mandy | 208 | C-17 | | x | | | Cary | 183 | C-18 | | × | | | Oscar | 211 | C-19 | | x | | | Debbie | 204 | C-20 | | x | | | Pepe | 252 | C-21 | | x | | | Fay | 254 | C-22 | | ж | | | Winnie | 262 | C-23 | | ж | | | Bhuddha | 263 | C-24 | | ж | | | Lucy | 264 | C-25 | | x | | | - | | | | | | Table 13 -- Concluded | Man Name | Man Number | Typical | Atypical | Absent | |-------------|------------|---------|----------|--------| | I B Boons | N 1 | | • | | | L. R. Boone | M 1 | * | x | | | B. J. Teal | M 2 | x | x | | | R. H. Vegl | м 3 | | x | | | Andy Taylor | M 4 | x | | | | C. Barton | M 5 | | | x | | L. R. Boone | М 6 | | x | | | B. J. Teal | M 7 | × | | x | | R. H. Vegl | M 8 | | x | | | Andy Taylor | М 9 | x | | | | C. Barton | M 10 | | x | | TABLE 14. LACTOBACILLI ISOLATED FROM ROGOSA'S PLATES | Animal | L. acidophilus
& varieties | L. casei
& varieties | L. fermenti
& varieties | A-typical or unidentified | Present* | Non-
transferrable** | |--------|-------------------------------|-------------------------|----------------------------|---------------------------|----------|-------------------------| | C-1A | | | X | | Х | X | | C-2A | | | X | | | | | C-3A | | | | х | | | | C-4A | | | | | | X | | C-5A | х | | | | | | | C-6A | | | | | | X | | C-7A | | | X | | | | | C-8A | | | | | | X | | C-9A | | | | | | х | | C-10A | | | X | Х | | х | | C-11A | | | | х | | | | C-12A | | • | | | | х | | C-13A | | | | | | х | | C-14A | | | | | | х | | C-15A | | | | | | Х | | C-16A | | | X | | | х | | C-17A | _ | | X | | | | | C-18A | | | | | | X | | C-19A | | | X | | | | | C-20A | | | X | | | X | | C-21A | х | | | X | | х | | C-22A | | | Х | | | | | C-23A | | | | | | X | | C-24A | | | Х | | | | | C-25A | | | | | | X | ^{Lactobacilli present but not isolated in pure culture Organisms failed to grow in subculture from Rogosa's plates} TABLE 14 --- Concluded | Handler | L. acidophilus
& varieties | L. casei
& varieties | L. fermenti
& varieties | A-typical or unidentified | Present ^(a) | Non-
transferrable ^(b) | |--------------------|-------------------------------|-------------------------|----------------------------|---------------------------|------------------------|--------------------------------------| | M-l | | | | | | х | | M-2 | | Х | Х | | | | | M-3 | | X | | | | Х | | M-4 | | | | | | X | | M-5 ^(c) | | | | | | . 1 | | M-6 ^(c) | | | | | | | | M-7 ^(c) | | | | | | | | M- 8 | | X | X | | | x | | M-9 ^(c) | | | | | | | | M-10 | х | | X | | Х | X | - (a) Lactobacilli present but not isolated in pure culture - (b) Organisms failed to grow in subculture from Rogosa's plates - (c) Rogosa's plate showed no growth TABLE 15. GROWTH HEIGHT OF ANAEROBIC DILUTION TUBE AND COUNTS FROM AEROBIC COUNTING PLATE | Animal Name | Holloman
Designation | RAC
Designation | *Anaerobic
Tube | ** Aerobic
Plate | |----------------|-------------------------|--------------------|--------------------|---------------------| | Betty | 203 | C-1A | 10 | 32 | | Sara | 261 | C-2A | 8 | tnte | | Fay | 254 | C-3A | 8 | 200 | | Angie | 162 | C-4A | 8 | 600 | | Pepe | 252 | C-5A | 8 | 0 | | Penny | 276 | C-6A | 10 | 0 | | Kenny | 275 | C-7A | 6 | 2 | | Dearl | 226 | C-8A | 10 | 200 | | Richie | 231 | C-9A | 10 | 3 | | Lorreine | 273 | C-10A | 9 | 150 | | Lady Bird | 274 | C-11A | 9 | 110 | | Andy | 225 | C-12A | 8 | 200 | |
Brian | 229 | C-13A | 10 | 4 | | Snoopy | 272 | C-14A | 7 | 62 | | Dick | 110 | C-15A | 10 | 150 | | Karen | 177 | C-16A | 10 | 236 | | Mandy | 208 . | C-17A | 10 | 42 | | Cary | 183 | C-18A | 10 | 62 | | Oscar | 211 | C-19A | 10 | >500 | | Debbie | 204 | C-20 A | 10 | 116 | | Pepe | 252 | C-21A | 7 | 4 | | Fay | 254 | C-22A | 10 | > 400 | | Winny | 262 | C-23A | 7 | > 200 | | Buddha | 263 | C-24A | 6 | 125 | | Lucy | 264 | C-25A | 7 | 105 | | Handler's Name | | | | | | L. R. Boone | | Man 1 | 6 | 0 | | B. J. Teal |] | Man 2 | 9 | 6 | | R. H. Vegl | | Man 3 | 9 | 8 | | A. Taylor | | Man 4 | 10 | 210 | | C. Barton | | Man 5 | 6 | 2 | | L. R. Boone | | Man 6 | 6 | 0 | | B. J. Teal | | Man 7 | 10 | 6 | | R. H. Vegl | | Man 8 | 8 | 1 | | A. Taylor | | Man 9 | .8 | 75 | | C. Barton | | Man 10 | 7 | 1 | $^{* 7 = 10^9 \}text{ etc}$ ^{**} taken from 10⁵ TABLE 16. DISTRIBUTION OF ANAEROBES IN FECAL SAMPLES FROM CHIMPANZEES | | | | | | | Cl | imp | anze | e Nun | aber (| | | | | |---|-----|-----|------------|---------------|------------|-----|-----|------------|-------|-------------|-------------|-----|----------|-----| | Anaerobes | 1A | 2A | 3 A | 4A | 5 A | 6A | 7A | 8 A | 9A | 10 A | 11A | 12A | 13A | 14A | | FA-1
FA-2
FA-3
FA-4
FA-5
FA-6 | | | | | | 1 | | | | 1 | 1 | | (1)
1 | | | FA-7
FA-8
FA-9
FA-10
FA-11
FA-12 | | | 1 | (1) | 1 | 1 | 1 | 1 | | | | | · | | | FA-13
FA-14
FA-15
FA-16
FA-17
FA-18 | 1 | (1) | 1 | | | | | 1 | | | | | | ··· | | GD-1
GD-2
GD-3
GD-4
GD-5
GD-6
GD-7 | (1) | 1 | (1) | 1
(1)
1 | 1 | 1 | | | 1 | | | | | | | CT-1
CT-2
CT-3
Unkeyed | | 1 | | 1 | | (1) | 1 | 1 | 2 | (1)
1 | | | 1 | 1 | | TOTAL | 2 | 4 | 3 | 5 | 3 | 5 | 2 | 3 | 3 | 3 | 1 | 0 | 3 | 2 | | FN-1
FN-2
FN-3
FN-4
FN-5 | 1 | 1 1 | 1 | | | 1 | 1 | | | | | (1) | (1) | | | Unkeyed Lactobacillus Enterococci CN-1 CN-2 Miscellaneous | 1 | | 1 | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | TOTAL | 3 | 2 | 2 | 0 | 0 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | () = Variation in pH TABLE 16 --- Continued | | | | | | Chim | panze | e Num | ber (C | ²) | | | | |----------------|----------|-------------|-------------|-----|-----------|-------|--|---------------------------------------|----------------|-------------|------|--| | Anaerobes | 15A | 16A | 17A | 18A | 19A | 20 A | 21 A | 22A | 23A | 24A | 25 A | Total | | FA-1 | | | | | | | | | | | | | | FA-2
FA-3 | | | | | | | | | | | | | | FA-4 | | | | | | | | | | | | 3 | | FA-5 | | | | | • | | | | | | 1 | 3 | | FA-6 | | | | | | | | 1 | | | | 1_1_ | | FA-7 | | 1 | | | | | | | | 1 | 1 | 7 | | FA-8
FA-9 | | 1
1 | | | | 1 | | | | | • | 4 | | FA-10 | | • | | | | • | 1 | | | | | 1 | | FA-11 | | | | | | | | | | | | | | FA-12 | | | | ļ | | | | | | | | 3 | | FA-13
FA-14 | | 1 | | | | | 1 | | | | | 1 | | FA-15 | | | | | | | | | | | | | | FA-16 | İ | 1 | 1 | İ | | | | | | | | 3 | | FA-17 | | | | İ | | | ļ. | | | | | | | FA-18 | | | | ļ | | 1 | | | | <u> </u> | | 2 | | GD-1 | | | | Ì | | | | | 1 | | | 1 | | GD-2
GD-3 | | | | | | | | | 1 | 1 | | 2 4 | | GD-3
GD-4 | 1 | | | | | | | | | - | | 1 | | GD-5 | | | | | | | 1 | | | | (1) | 5 | | GD-6 | | | | | | | (1) | (1) | | 1 | 1 | 6 | | GD-7 | | | | ļ | · · · · · | | <u> </u> | | | ├ ── | | | | CT-1 | | | | 1 | | | ١, | | | | | 3 | | CT-2
CT-3 | 1 | | | 1 | | 1 | 1 | 1 | 1 | 1 | | 2 | | Unkeyed | i | | | * | | • | 2* | | - | | | 9 | | TOTAL | 2 | 4 | 1 | 1 | 0 | 3 | 7 | 3 | 2. | 3 | 4 | 69 | | FN-1 | T | | | 1 | | | | | | | | 3. | | FN-2 | | | | 1 | 1 | | | | | | | 4 | | FN-3 | | | | | | 1 | | | 3 | | | 3 4 | | FN-4
FN-5 | | | | | | | | | | | | 1 | | Unkeyed | | | 4 | | | | | · · · · · · · · · · · · · · · · · · · | 1 | | | 6 | | Lactobacillus | | | _ | | | | | | | | | _ | | Enterococci | <u> </u> | | | | | | | | 1 | 1 1 | | 3 | | CN-1
CN-2 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | | | 1 1 | 1 | 17
3: | | Miscellaneous | | | | | | | | | | - | | | | TOTAL | 1 | 2 | 5 | 2 | 3 | 2 | 1 | 0 | 5 | 3 | 1 | 44 | ^{*}Unable to transfer Table 16 -- Continued | | Pep | e ^(c) | | Pop | 1 | Possi | ım ^(a) | Ri | chie ^{(c} |) | |----------------|--|---------------------------------------|--|---------------------------------------|--------------|-------------|--------------------|--------------|--------------------|---------------------------------------| | Anaerobes | 5A | 21A | 66 ^(a) | 109 ^(C) | 2 14 | 64 | 120 ^(C) | | 131 | | | FA-1 | | | | | | | | | | | | FA-2 | | | | | 1 | | | | | | | FA-3
FA-4 |]. | | | | | | | | | | | FA-5 | | | | | | | | | | | | FA-6 | ļ. | | 1 | | Ì | | | | | | | FA-7 | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | FA-8 | 1 | | | 1 | | | 1 | | | | | FA-9 | | _ | | | 1 | | | | | | | FA-10 | j | 1 | | | | | | | | | | FA-11
FA-12 | 1 | | | | ļ | | | | | | | FA-13 | | 1 | | | | | | | | ···· | | FA-14 | | - | | | | | | | | | | FA-15 | | | | | | | | 1 | | | | FA-16 | İ | | | | l | | | | | | | FA-17 | | | | | | | | l | | | | FA-18 | | | | | | | | | ني - سيون | | | GD-1 | | | | | | | | | | | | GD-2 | 1 | | | | | | | | | | | GD-3 | 1 | | | | | | | | | | | GD-4
GD-5 | | 1 | | | | | | | • | | | GD-6 | 1 | (1) | | | | | | | | 1 | | GD-7 | | (-/ | | | | | | | | - | | CT-1 | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | CT-2 | | 1 | | | | | | | | | | CT-3 | | | | | | | | | | _ | | Unkeyed | <u> </u> | 2* | ٠. | | 2 2 | | 1 | | | 2 | | TOTAL | 3 | 7 | 1 | 1 | 3 3 | 0 | 2 | 1 | 0 | 3 | | FN-1 | | | | | | | | | | | | FN-2 | | | | | | | | | 1 | | | FN-3
FN-4 | | |] | | | | | | | | | FN-5 | | | 1 | | | | | | | | | Unkeyed | † | | | · · · · · · · · · · · · · · · · · · · | 4 | | | 1** | F |) | | Lactobacillus | | | 1 | | l | | | | | | | Enterococci | | | 3 | 8 | 1 1 | 3 | 8 | 5 | 6 | | | CN-1 | | I | | | | | | | | 1 | | CN-2 | | | | | | | | 1 | | | | Miscellaneous | | ş · | | | <u> </u> | | | | | | | TOTAL | 0 | 1 | 4 | 8 | 5 1 | . 3 | 8 | 6 | 7 | 1 | variation in pH unable to transfer salivarius Table 16 -- Continued | | | | | | | | E | lbys | (b) | | | | | | | | |-----------------|----------|-------------|-------------|--------------|--------------|----|-------------|--------------|--|---------|-----|-----|-----|----------|-----|-----| | Anaerobes | 9 | 24 | 36 | 44 | 59 | 72 | 83 | 95 | 107 | 115 | 129 | 139 | 151 | 160 | 171 | 145 | | FA-1 | Π | | | | 1 | | | | | | | | | | 1 | | | FA- 2 | | | | | l | 4 | | | | | | | 2 | | | | | FA-3 | | | | | 1 | | | | | | | | | | | | | FA-4 | ١. | | | | İ | | | | | | | | | | | | | FA-5 | 1 | | | | ł | | | | | | 1 | | 1 | | | | | FA-6 | <u> </u> | | | | ļ | | | | <u> </u> | | | | | | | | | FA-7
FA-8 | 1 | | 1 | | ĺ | | | 1 | İ | | | | | | | | | FA-9 | * | | 1 | | Í | | | - | | | | | İ | | | | | FA-10 | | | | | ł | | | | | | | | | | | | | FA-11 | | | | | l | | | | | | | | | | | | | FA-12 | | | | | | | | | ŀ | | | | | | | | | FA-13 | | | | | 1 | | | | | | | | | _ | | | | FA-14 | 1 | | | | | | | | | | | | | 1 | 1 | | | FA-15 | ŀ | | | | | | | | 1 | | | | | | | 1 | | FA-16 | | | | | | | | | | | | | | | | | | FA-17 | | | | | i | | | 1 | 1 | | | | 3 | | | 2 | | FA-18 | | | | | <u> </u> | | | | | | | | | | | | | GD-1 | | | | | | | | | 1 | | | | | | | | | GD-2 | İ | | | | 1 | | | | 1 | | | | | | | | | GD-3 | | | | | 1 | | | | ł | | | | ł | 1 | | | | GD-4 | | | | | | | | | | | | | ŀ | | | | | GD-5 | | | | | | | | | 1 | | | | | | | | | GD-6
GD-7 | 1 | | | | | | | | j | | | | | 1 | | | | | | | | | ↓ | | | | ┼ | | | | - | | | | | CT-1 | | | | | 1 | | | | | | | | | | | | | CT-2 | | | | | 1 | | | 1 | | | | | | | | | | CT-3 | | | | | 1 | | | 1 | | | | | 1 | 9 | 1 | | | Unkeyed | _ | | | | - | 1 | | 1 | ├ | | | | + | | | | | TOTAL | 2 | 0 | 1 | 0 | 1 | 5 | 0 | 4 | 0 | 0 | 1 | 0 | 7 | <u> </u> | 3 | 3 | | FN-1 | | 1 | | | | | _ | | | | | | | | | | | FN-2 | $ ^1$ | 1 | | | | | 1 | | 2 | | | | | | | | | FN-3 | l | | | | | | | | 1 | | | | | | | | | FN-4 | | | | | | | | | 1 | | | | } | | | | | FN-5
Unkeyed | ╁ | | | 1 | + | 1 | | | 2 | | | 1 | 1 | 1 | | | | Lactobacillus | 4 | 2 | 2 | 3 | 1 | - | | 2 | 2 | 4 | 5 | ī | 2 | _ | 2 | 3 | | Enterococci | 5 | | _ | í | 6 | 1 | 3 | 1 | 1 | $ar{2}$ | - | 8 | | | 4 | | | CN-1 | t^{-} | | | | 1 | | | - | | | | | T | | | | | CN-2 | | | | | | | | | | | | | | | | 1 | | Miscellaneous | | | | | | | | | <u> </u> | | | | | | | | | TOTAL | 10 | 4 | 2 | 5 | 7 | 2 | 4 | 3 | 7 | 6 | 5 | 10 | 3 | 2 | 6 | 4 | Table 16 -- Continued | | F | ay (c) | Floy | rd ^(c) | Gi | igi | Glo | ry ^(c) | |--------------------------|---------|---------------------------------------|--------------|-------------------|-------------------|--------------------|--|-------------------| | Anaerobes | 3A 🛝 | 22A | 134 | 170 | 28 ^(a) | 104 ^(c) | 138 | 155 | | FA-1 | | | 1 | | | | | 2 | | FA-2 | | | , 1 | | | | | | | FA-3 | | | ļ | | | | | 1 | | FA-4 | | | | | 1 | | | | | FA-5 | | 1 | | | 1 1 | 1 | | | | FA-6
FA-7 | | <u>_</u> | | | | | | | | FA-8 | , | | | | 2 | 2 | · | | | FA-9 | 1 | 4 | • | | ī | _ | | | | FA-10 | - | | | | _ | | | | | FA-11 | | | 1 | | | | | | | FA-12 | | | 1 | | | | | | | FA-13 | | · · · · · · · · · · · · · · · · · · · | | | 1 | | | | | FA-14 | | | | | | | | 1 | | FA-15 | | | | 1 | | | | | | FA-16 | 1 | | | | | | | | | FA-17 | | | | | 1 | | | | | FA-18 | | | 1 | | | | | | | GD-1 | , | |
 | | | | | | GD-2 | | | | | | - | | | | GD-3 | | | | |] | | | | | GD-4 | | | | | | | į | | | GD-5 | (1) | | | | l | | | | | GD-6 | | (1) | | _ | | | | | | GD-7 | .,, | | | 1 | | | | | | CT-1 | | | | | 1 | | | | | CT-2 | | 1 | | | | | | | | CT-3 | | | | | | | | | | Unkeyed | | | | | <u> </u> | 6 | | | | TOTAL | 3 | 3 | 3 | 2 | 4 | 9 | 0 | 4 | | FN-1 | | | | | 1 | | | | | FN-2 | | | | | | | I | | | FN-3 | l _ | | | | 1 | | | | | FN-4 | 1 | | 1 | | | | 1 | | | FN-5 | | | | | 2 | | | | | Unkeyed
Lactobacillus | I | | | | | 1 | | | | Enterococci | l | | 2 | 1 | | Ţ | 6 | 1 | | CN-1 | 1 | | | <u>_</u> | | | | | | CN-2 | 1 * | | | | | | | | | Miscellaneous | | | | | | | | | | TOTAL | 2 | 0 | 2 | 1 | 3 | 1 | 6 | 1 . | (1) = Variation in pH Table 16 -- Continued | | Gromi | ic ^(c) | | Gu | y ^(a) | | Н | oward | | Jan | et ^{(a} |) | |----------------|---|-------------------|----|----|------------------|--------------------|-------------------|--------------------|---------|-----|------------------|--------------------| | Anaerobes | 136 | 151 | 31 | 47 | 58 | 102 ^(C) | 10 ^(a) | 117 ^(C) | 30 | 48 | 59 | 103 ^(c) | | FA-1 | | 3 | | | | | | | | | | | | FA-2 | | | | | | | | | | | | ĺ | | FA-3 | | 2 | | | | | | ; | | | | | | FA-4 | | | İ | | | | | | i | | | | | FA-5 | | | 1 | | | | | | | | | | | FA-6 | | | 2 | | | | | | ļ | | | | | FA-7 | | • | l | 2 | | | | 1 | 2 | | | : | | FA-8 | | 1 | } | Z | | | | 1 | - | | 1 | | | FA-9 | | 1 | į | | | | [| | 1 | | - | i | | FA-10 | | 1 | 1 | | | ! | | | 1 | | | | | FA-11 | | | | | | | 1 | | - | | | | | FA-12
FA-13 | | | + | | | ··· | - | | _ | | | | | FA-13
FA-14 | | | 1 | | | |] | | | | | | | FA-14
FA-15 | | | 1 | | | | 1 | | | | | | | FA-16 | | | 1 | | | | | | 1 | | | | | FA-17 | | 1 | | | | | | | 1 | | | | | FA-18 | | 1
1 | | | | | | | 1 | | | | | | | | ╂┈ | | | | | | T | | | | | GD-1 | ļ [,] | | 1 | | | | ł | | | | | | | GD-2 | { | | | | | | ł | | | | | | | GD-3 | ł | | 1 | | | | | | 1 | | | | | GD-4 | | | 1 | | | | 1 | | | | | | | GD-5
GD-6 | | | 1 | | | | | | | | | | | GD-6
GD-7 | | | 1 | | | | | | 1 | | | | | | ļ | · | - | | | | | | +- | | | | | CT-1 | Į | | | | | | } | | | | | | | CT-2 | | | | | | | } | | | | | | | CT-3 | | | 1 | | | 1 | 2 | 2 | 1 | | | | | Unkeyed | | | 4 | | | | | | +_ | | | | | TOTAL | 0 | 9 | 3 | 2 | 0 | 1 | 3 | 3 | 3 | 0 | 1 | . 0 | | FN-1 | | | | _ | | | | | | 2 | | | | FN-2 | | 1 | 1 | 2 | | | 1 | | | 1 | | | | FN-3 | 1 | | | 1 | | | | | | 1 | | | | FN-4 | 1 | | | | | | | | | 1 | | | | FN-5 | | | 1 | 4 | | 1* | | | ╫ | 1 | | 1* | | Unkeyed | , | | 1 | 4 | | 1 | 1 | 1 | 1 | | | L | | Lactobacillus | 1 6 | 1 | | 1 | 4 | | * | 8 | - | 2 | | 3 10 | | Enterococci | ' | | + | | | | + | | +- | | | | | CN-1
CN-2 | { | | | | | | 1 | | | | | | | Miscellaneous | | | | | | | 1 | | - | | | | | | 7 | 2 | 2 | 8 | | 10 | 1 | 9 | 10 | 7 | | 4 11 | | TOTAL | | | | - | * | 10 | 1_1_ | | <u></u> | | | | ^{*} salivarius Table 16 -- Continued | | Jer | ry ^(c) | Lave | eta(c) | | Len | nie ^{(a} |) | L | inus | |----------------|-----|-------------------|----------|-------------|----------|-------------|-------------------|--------------------|-------------------|---------------------------------------| | Anaerobes | 144 | 165 | 149 | 164 | 33 | 52 | 56 | 105 ^(c) | 65 ^(a) | 106 ^(c) | | FA-1 | | 1 | 1 | | T | - | | | 1 | | | FA-2 | | | | | | | _ | | | | | FA-3 | | 1 | | | 1 | | 1 | | | | | FA-4
FA-5 | | | | | l | | | | | | | FA-5
FA-6 | | | | | 1 | 1 | | | | | | FA-7 | | | | | +- | | | | | | | FA-8 | | | | | | 2 | | | | 1 | | FA-9 | | | | | 1 2 | | | | | _ | | FA-10 | | | | | 2 | | | • | 1 | | | FA-11 | | | | | 1 | | 1 | | | | | FA-12 | | | | | <u> </u> | | | | | | | FA-13 | | | | | 1 | | | | | | | FA-14
FA-15 | 2 | | | | | | • | | | • | | FA-16 | 2 | | | | 1 | | 1 | | | 1 | | FA-17 | 1 | | | | | | | | | · | | FA-18 | • | 1 | | | | | | ! | | ! | | GD-1 | | | | ····· | + | | | | | | | GD-2 | | | | | | | | | | : | | GD-3 | | | | | | | | | | | | GD-4 | | | | | 1 | | | | | | | GD- 5 | | | i | | 1 | | | | | | | GD-6 | | | | | | | | | | | | GD-7 | | | | | <u> </u> | | · | | | | | CT-1 | | | | | 1 | | | | | | | CT-2 | | | | | 1 | 1 | | | | | | CT-3 | | | | | 1. | | • | | | | | Unkeyed | | | | | 1 | | 2 | | | 11 | | TOTAL | 3 | 3 | 1 | 0 | 5 | 4 | 5 | 0 | 2 | 3 | | FN-1 | | | | 1 | | 1 | | | | | | FN-2 | | | | | | | | | | | | FN-3 | | | | | ļ | | | | | | | FN-4
FN-5 | | | Ī | | | | | | | | | Unkeyed | | | | | 1 | | | · *** | | | | Lactobacillus | | | | 1 | 1 | 1 | | | 2 | | | Enterococci | | 3 | | 1
2 | | - | | 6 | ī | 6 | | CN-1 | | | | | 1 | | | | | · · · · · · · · · · · · · · · · · · · | | CN-2 | | | | | | | | | | | | Miscellaneous | | | | | | | | | | | | TOTAL | 0 | 3 | 0 | 4 | 1 | 2 | 0 | 6 | 3 | 6 | Table 16 -- Continued | | | | | | | | Mar | uel (| b) | | | | | | | | |----------------|----------|----|----|----|-------------|----|------|--------|--------------|-------|-----|-----|--|--------|------|-------------------| | Anaerobes | 12 | 23 | 34 | 43 | 58 | 65 | 84 | | | 118 1 | 128 | 140 | 152 | 162 1 | 73 1 | 46 ^(C) | | FA-1 | | | | | | | | | | | | | | 1 | | | | FA-2 | | | | | l | | | | | | | | | | | 1 | | FA-3 | | | | | l | | | |] | | | | | | | ì | | FA-4 | | | | | | | | | | | | | | | | | | FA-5 | | | | _ | | | | | 1 | | | | 1 | | | Ì | | FA-6 | | | | 1 | | | | | | | | | | | | | | FA-7 | | | | | 1 | 1 | | | <u> </u> | | | | | | | l | | FA-8 | 1 | | | | | | | | | | | | | | | 1 | | FA-9 | | | | | 1 | | | | | | | | | | | 1 | | FA-10 | | | | | 1 | | | | | | | | | | | - 1 | | FA-11 | | | | | 1 | | | | | | | | | | | | | FA-12 | | | | | | | | | | | | | | | | | | FA-13 | | | | | ł | | | | 1 | | | | | | | | | FA-14
FA-15 | | | | | ł | | | 1 | 1 | | | | | | | | | FA-16 | | | | | 1 | | | • | - | | | | | | | | | FA-16
FA-17 | | | | | [| 1 | | | l | | | | | | | | | FA-17
FA-18 | | | | | ļ | - | | | | | | | 1 | | | | | | | | | | ├ | | | | | | | | | | | | | GD-1 | , | | | | | | | | 1 | | | | | | | | | GD-2 | | | | | 1 | | | | | | | | | | | | | GD-3 | İ | | | | | | | | | | | | 1 | | | | | GD-4 | | | | | 1 | | | | 1 | | | | | | | | | GD-5 | | | | | i | | | | ł | • | | | | | | | | GD-6 | | | | | 1 | | | | 1 | | | | | | | | | GD-7 | | | | | | | | | ┧— | | | | | | | | | CT-1 | | | 3 | 1 | Ì | | | | | | | | | | | | | CT-2 | ١. | 1 | | | 1 | | | | 1 | | | | i | • | | | | CT-3 | Ì | | | | 1 | | | | | | | | | 1
1 | | | | Unkeyed | 1 | | | | <u> </u> | | | | | 1 | | | 1 | | | | | TOTAL | 2 | 1 | 3 | 2 | 0 | 2 | 0 | 1 | 1 | 1 | 0 | 0 | 2 | 3 | 0 | 0 | | FN-1 | | | | | | | | | | | 1 | | | | | | | FN-2 | 1 | 1 | | | | 2 | 1 | 1
3 | | | 2 | | 1 | | | | | FN-3 | | | | | | | | 3 | | | | | 1 | | | | | FN-4 | 1 | 1 | | | | | | | | | | | 1 | | | | | FN-5 | <u> </u> | | | | | | | | | | | | ┼ | | | - | | Unkeyed | 1 | | | | | | 2 | _ | | | | | | 1 | | 1 | | Lactobacillus | 1 | | | 1 | | _ | | 2 | 2 | | _ | • | 3 | | 1 | 3 | | Enterococci | 4 | 2 | | 2 | 2 | 2 | 4 | | 4 | 4 | 3 | 9 | | | 5 | 1 | | CN-1 | Ì | _ | | | 1 | | | | | 1 | | | 1 | | | 1 | | CN-2 | I | 1 | | | | | | | 1 | | | | 1 | | | 1 | | Miscellaneous | — | | | | ┼ | | ···- | | - | | | | +- | | | | | TOTAL | 8 | 5 | 0 | 3 | 2 | 4 | 7 | 6 | 2 | 5 | 6 | 9 | 3 | 1 | 6 | 6 | Table 16 -- Continued | | N | larty | Me | (c) | Mered | ith ^(c) | C | scar (| a) | |----------------|-------------------|--------------------|-------------|---------------|-------|--------------------|----------|--------|-----| | Anaerobes | 67 ⁽²⁾ | 100 ^(c) | 137 | 157 | 135 | 152 | 26 | 44 | 19A | | FA-1 | | 1 | | | | 1 | Ī | | | | FA-2 | 1 | | 1 | | | | İ | | | | FA-3 | ļ | | Ì | | | 1 | 1 | | | | FA-4 | | | | | Ī | | | | | | FA-5 | | | | | | | | | | | FA-6 | | | | | | | <u> </u> | | | | FA-7 | | | | | | | | | | | FA-8 | | | | | | 1 | | | | | FA-9 | ļ | | | | | | 1 | | | | FA-10 | | | | | | | ļ | | | | FA-11 | Ì | | | | | | Ì | | | | FA-12 | ļ | | | | | | | | | | FA-13 | · | | | | İ | | | | | | FA-14 | ļ | 1 | İ | | | | | | | | FA-15
FA-16 | İ | • | ļ | | j | | | | | | FA-17 | | | | | ŀ | | | | | | FA-18 | į | | | | | 1 | | | | | | | | | | | | | | | | GD-1 | | * | e e e | | | | | | | | GD-2 | 1 | | Ì | _ | | | | | | | GD-3 | | | | 1 | | 1 | | | | | GD-4 | | | | | | | | | | | GD-5 | | | | | | | ļ | | | | GD-6 | | | i | | | | | | | | GD-7 | | | | · | | | | | | | CT-1 | | | · | | | | | | | | CT-2 | | | | | | | 1 | | | | CT-3 | | | | | | |] | | | | Unkeyed | ļ | | | | | | | 1 | | | TOTAL | 0 | 2 | 0 | 1 | 0 | 5 | 0 | 1 | 0 | | FN-1 | , | | ` | | | | 1 | | | | FN-2 | | |] | | | | | | 1 | | FN-3 | | | | | | | 1 | | | | FN-4 | 1 | | | | | | 1 | | | | FN-5 | <u> </u> | | | | 1 | | <u> </u> | | | | Unkeyed | | 1* | | | 1 | | 1 | 1 | | | Lactobacillus | 1 | 1 | 3 | 1 | _ | | 1 | | | | Enterococci | 3 | 5 | 6 | | 2 | | 2 | 1 | | | CN-1 | | | | | | | | | 2 | | CN-2 | | | | | | | | | | | Miscellaneous | | ···· | | | 1** | | 1 | | | | TOTAL | 3 | 7 | 9 | 1 | 4 | 0 | 3 | 2 | 3 | salivarius veillonella Table 16 -- Continued | | | | | | | | | | | Sonia | (b) | | | | | (a) | (a) | <u> </u> | <u> </u> | |---------------------------------------|----------|----|----|----|----|----|----|-----|-----|-------|-----|-----|-----|-----|-----|-----------|--------|----------|-------------| | Anaerobes | 4 | 16 | 30 | 40 | 53 | 70 | 82 | 86 | 106 | 110 | 126 | 136 | 144 | 157 | 166 | 00 | 11(a) | 142(c) | 174(c) | | FA-1 | | | | | | | | | | | Π | | | 1 | | | | | | | FA-2 | 1 | | | | | 1 | | | | | Į. | | | | | | | | | | FA-3 | | |
 | | l | | | | | ļ | | | 1 | | 2 | | | | | FA-4 | | | | | | l | | | | | ŀ | | 1 | | | | | | | | FA-5 | l | | | | | | | | | | 1 | | 1 | | | | | | | | FA-6 | 1 | | | 1 | | ł | | | | 2 | | | | | 1 | | | | | | FA-7 | | | | | | | | | | | T | | | | | | 2
2 | | | | FA- 8 | 5 | | | | | l | | 1 | | | | | | | 2 | I | 2 | | | | FA-9 | | | | | | Į. | | | | | | | | | | 1
2 | | | | | FA-10 | 1 | | | | | 1 | | | 1 | | 1 | | | | | 2 | | | | | FA-11 | | | | | | 1 | | | | | 1 | | | | | | | | | | FA-12 | <u>L</u> | FA-13 | FA-14 | 1 | | | | | l | | | | | 2 | | | 1 | | _ | | | | | FA-15 | 1 | | | | | 1 | | | | | 1 | | 1 | | | 2 | | | | | FA-16 | { | | | | | | | | | | 1 | | | | | | | | | | FA-17 | 1 | | | | | 1 | | | | | | | | | | | | | 1 | | FA-18 | | | | | | i | | | | | 2 | | | | 1 | | | | 1 | | GD-1 | | | | | | | | | | | | | 1 | | | | | | | | GD-2 | 1 | | | | | | | | | | | | _ | | 1 |] | | | | | GD-3 | l | | | | | ĺ | | | | | 1 | | | | _ | | | | | | GD-4 | İ | | | | | 1 | | | | | | | | | | 1 | | | | | GD-5 | İ | | | | | 1 | | | | | 1 | | | | | | | | | | GD-6 | 1 | | | | | 1 | | | | | 1 | | | | | | | | | | GD-7 | 1 | | | | | 1 | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | 1 | | | | | 1- | 1 | | | | +- | | | | | 1 | | | | | CT-1 | + | | | | | ł | Ŧ | | | | | | | | | | | | | | CT-2
CT-3 | l | | | | | l | | | | | 1 | | | | | | | | | | | 1 | | | 1 | | ١, | 1 | 1 | 1 | 1 | 4 | | | 1 | | | | | | | Unkeyed | <u> </u> | | | | | 1 | 1 | | | | ┼ | | | | | - | | | | | TOTAL | 7 | 0 | | 2 | 0 | 2 | 2 | 2 | 2 | 3 | 10 | 0 | 4 | 4 | 5 | 7 | 4 | 0 | 2 | | FN-1 | | 2 | | | | | | | | | | | | | | | | | | | FN-2 | | 2 | | | | 1 | 2 | | | | 1 | | | | | 1 | 1 | | | | FN-3 | | | 3 | | | | | | | | | | | | | 1 | | 1 | | | FN-4 | | | | | | | | | | | | | | | | 1 | | | | | FN-5 | Unkeyed | | | | | | 1 | 1 | | | | | | | 1 | | 1 | | 1 | _ | | Lactobacillus | 3 | | | 3 | | | 1 | 1 | 3 | | 1 | | 2 | | 1 | 2 | | 2 | 2 | | Enterococci | <u>L</u> | 3 | | | 2 | 3 | | | | | 1_ | 7 | 1 | 1 | | <u>L_</u> | | 1 | 1 | | CN-1 | | | | | | | | | | | 1 | | | | | | | 1 | | | CN-2 | | | | | | | | | | | | | | | 3 | | | | 1 | | Miscellaneous | | | | | | _ | | | | | ļ | | | | | | | | | | TOTAL | 3 | 7 | 3 | 3 | 3 | 5 | 4 | _ 1 | 3 | 0 | 2 | 7 | 3 | 2 | 4 | 3 | 1 | 6 | 4 | Table 16 -- Continued | | | | | | | | | | M | limi
So | (b) | | | | | 41 (c) | (O) 89 | | |-----------------|--|-------------|----|----|----|--|-------------|----|-----|------------|--------------|------|-----|-----|----------------|-------------|--------|---| | Anaerobes | 63 | F | 23 | 36 | 99 | 7.1 | 80 | 88 | 105 | 108 | 127 | 135 | 145 | 158 | 167 | 141 | 168 | | | FA-1 | | | | | | | | | | | | | | | | | | - | | FA-2 | 2 | | | | _ | | | | | | | | | | | | | | | FA-3 | • | | | | 2 | 2 | | | | | l | | | | | | | | | FA-4
FA-5 | 1 | | | | | | | | | 2 | | , | | | | | | | | FA-6 | 1 | | | | | | | | | 4 | | 1 | | | | | 1 | | | FA-7 | \vdash | | | | | \vdash | | | | | | | 1 | | | | | | | FA-8 | 3 | | | | | 1 | 1 | | | | | | _ | | 1 | | | | | FA-9 | | | | | | | | | | | İ | | | | | | | | | FA-10 | | | | | | l | | | | | • | | | | l | | | | | FA-11 | FA-12 | | | | | | 1 | | | | | | | 1 | | | | | | | FA-13
FA-14 | | 1 | | | | • | | | | | | | | | ! | | | | | FA-14
FA-15 | l | 1 | | | | | | | | | | | | | | | | | | FA-16 | | | | | | | | | | | 1 | | | | | | | | | FA-17 | | | | | | | | | | | - | | 2 | 1 | | | | | | FA-18 | | | | | | | | | | | | | _ | • | 1 | 1 | | | | GD-1 | | | | | | | | | | | | | | | | | | | | GD-2 | GD-3 | | | | | | | | | | | | | | | 1 | | | | | GD-4 | • | | | | | | | | | • | | | | | İ | | | | | GD-5 | GD-6 | | | | | | | | | | | ŀ | | | | | | | | | GD-7 | | | | | | | - , | | | | | | | | ļ | | | | | CT-1 | | _ | | | | 1 | | | | | l | | | | | | | | | CT-2 | | 1 | | | 1 | l | | | | | | | | | | | | | | CT-3
Unkeyed | | A | | | | | | | • | | ١. | • | | 1 | , | | | | | | 1 | 4 | _ | _ | | _ | | | 1 | | 2 | 1 | | 1 | 1 | | 1 | | | TOTAL | 7 | 6 | 0 | 0 | 3 | 5 | U | 1 | 1 | 2 | 3 | 2 | 4 | 2 | 3 | 1 | 2 | | | FN-1 | | 4 | | _ | | l | | | | | | | | | | 1 | | | | FN-2 | | | _ | 1 | | 1 | | | | | | | | | | 2 | | | | FN-3
FN-4 | | | 3 | | | | | | | | 1 | | | | l | | | | | FN-5 | | | | | | | | | | | i | | | | 1 | | | | | Unkeyed | | 1 | | 1 | | | 4 | | | | \vdash | ···· | 2 | 1 | + | | | | | Lactobacillus | | | | - | 2 | 2 | - | 5 | 3 | | 2 | 1 | ī | - | 3 | 6 | 4 | | | Enterococci | | 1. | | 1 | 3 | 3 | | | | | 1 | 3 | _ | | 1 | - | 2 | | | CN-1 | | | | | | | | | | | 3 | 1 | | , ' | | | | | | CN-2 | | | | | | | | | 1 | | 1 | | | | | | | | | Miscellaneous | | | | | | | | | | | <u> </u> | | | | | | | | | TOTAL | 0 | 6 | 3 | 3 | 5 | 5 | 4 | 5 | 4 | 0 | 6 | 5 | 3 | 1 | 5 | 9 | 6 | | Table 16 -- Continued | | | | | | | | | P | hil (| b) | | | | | | 15(a) | 147(c) | |---------------|----------|----|----|----|-----|--------------|----|----|-------|--------------|-----|-----|-----|--------------|----------|-------|--------| | Anaerobes | 00 | 22 | 35 | 46 | 51 | 69 | 80 | 91 | 5 | 117 | 125 | 137 | 149 | 155 | 174 | 15 | 147 | | FA-1 | | | | | 1 | | | | | | | | 2 | 1 | | | | | FA-2 | | | | 1 | | 1 | | | 1 | | | | - 1 | | | | | | FA-3 | | | | | | 1 | 1 | | | | | | İ | | | | i | | FA-4 | | | | | | İ | | | l | | _ | | ! | | | | | | FA-5 | | | | _ | | | | _ | 1 | | 1 | | 1 | | 1 | | | | FA-6 | | | | 2 | | 2 | | 1 | | | | | —∤ | | <u> </u> | | | | FA-7 | | | | | _ | 1 | | | 1 | | 1 | | 1 | | | | | | FA-8 | 1 | | | | 1 | | | | 1 | | T | | | 1 | | 1 | | | FA-9 | | _ | | | | 1 | | | | | | | 1 | | 1 | 1 | 1 | | FA-10 | • | 1 | | | | Į. | | | | | | | - | 1 | _ | - | _ | | FA-11 | | | | | | | | | | | | | | 1 | | | | | FA-12 | | | | | | | | | | | | | | | | | | | FA-13 | | | 1 | | | Ì | | | | | 1 | | | | | | | | FA-14 | | | 1 | | 1 | | | 1 | i | | _ | | 1 | 1 | | | | | FA-15 | | | | | 7 | 1 | | т. | | | | | • | • | | | | | FA-16 | | | | | | | | | | | | | | | | | 1 | | FA-17 | | | | | | | | | | | | 1 | 1 | | 1 | | 1 | | FA-18 | _ | | | | | ┼ | | | | | | | | | | | | | GD-1 | | | | | | ļ | | | | | | | | 1 | | | | | GD-2 | ł | | | | | | | | | 1 | | | | | | | | | GD-3 | ļ | | | | | | | | | | | | | | | | | | GD-4 |] | | | | | 1 | | | | | | | | | | | | | GD-5 | | | | | | | | | | | | | | - | | | | | GD-6 | | | | | | | | | | | | | | ١., | | | | | GD-7 | <u> </u> | | | | | | | | | | | | | 1 | | | | | CT-1 | | , | | 1 | | | | | | | | | | 1 | | | | | CT-2 | 1 | | | | | 1 | | | | | 1 | | | | | | | | CT-3 | l | | | 1 | • | 1 | | | | | | 1 | | | | | | | Unkeyed | | 3 | 1 | | | 1 | | 2 | | | 1 | | 1 | | | | | | TOTAL | 1 | 4 | 2 | Ę | 5 3 | 5 | 1 | 4 | 1 | 0 | 5 | 2 | 6 | 5 | 3 | | | | FN-1 | T | | | | | T | | | | | | | | | | 2 | | | FN-2 | 1 | | 1 | | | | | | | | | | | 1 | 2 | | | | FN-3 | 1 | | | | | | | | | 1 | | | | } | | | | | FN-4 | 2 | 1 | | | | | | | | İ | | | | | | | | | FN-5 | | | | | | | | | | | | | 1 | | | | | | Unkeyed | | 4 | | | | 1 | 1 | 2 | | 1 | | | 1 | | 1 | 2 | | | Lactobacillus | 2 | | 3 | | | 1 | | 2 | 4 | 1 | 1 | | 1 | 1 | _ | | 1 | | Enterococci | \perp | | | | 1 | | | | | <u> </u> | | 7 | | | 3 | | | | CN-1 | T | | | | | | | | | | | | | 1 | | | | | CN-2 | 1 | | | | | 1 | | | | 1 | | | | | | | | | Miscellaneous | _ | | | | | 1 | | | | | | | | <u> </u> | | | | | TOTAL | 14 | 5 | 4 | (| 1 | 3 | 1 | 4 | 4 | 2 | 1 | 7 | 3 | 3 0 | 6 | 4 | | Table 16 -- Continued | | | | | | | | | | Ra | ndy | DE | | | | | a | 3 | 9 | 9 | |----------------|--------------|-------------|----|----|----|----------|--------|------------------|--------|-----|----|-------------|-------------|--------|-------------|----------|-----|-------------|-------------| | Anaerobes | | 13 | 23 | 38 | 55 | 62 | 72 | 87 | | | | 3 | 3 | 3 | 18 | - | N N | 3 | 3 | | FA-1 | | | | | 7 | | | | | | 1 | | | | | | | | - | | FA-2 | | | | | | | | | | | | | | | | l l | | | | | FA-3
FA-4 | | | | | | Ì | | | | | | | | 1 | | | 4 | | | | FA-5 | | | | | | 1 | | | | | | | 2 | | | 1 | | | • | | FA-6 | | | | | | * | | | | | | | 1 | | | | | | 1 | | FA-7 | - | | | | | _ | | | | | - | | | | | | | | | | FA-8 | 1 | 1 | | | 2 | | | | | | | | | | | | | | 1 | | FA-9 | FA-10 | | | | | | | | | | i | | | | | | | | | | | FA-11 | | | | | | ļ | | 1 | | | | | | | | | | | | | FA-12
FA-13 | | | | | | - | | | | | — | | | | | | 1_ | | | | FA-14 | | | | | | | | | | | | | 2 | | | | | | | | FA-15 | | | | | | | | | | | ŀ | | 2
1 | | | 1 | | 1 | | | FA-16 | FA-17 | FA-18 | | | | | | <u> </u> | | | | | | | | 1 | | | | | | | GD-1 | | | | | | | | | | | | ., | | | | | | | | | GD-2 | GD-3 | GD-4
GD-5 | GD-6 | | | | | | | | | | | l | | | | | | | | | | GD-7 | CT-1 | | | | | | | | | | | | | | - "3." | | | | | | | CT-2 | | | | | | | | | | | | | | | | | 2 | | | | CT-3 | ŀ | | | | | | | | | | | | | | | 1 | | | | | Unkeyed | 1 | 1 | | | | 1 | | | 1 | | | 3 | 1 | 3 | | | 1 | | | | TOTAL | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 1 | 1 | 0 | 1 | 3 | 7 | 5 | 0 | 1 | 8 | 1 | 2 | | FN-1 | | 1 | _ | 1 | | | | | | 1 | | | | | | | | | | | FN-2 | | | 2 | 1 | | 1 | | | | | | | | | | 1 | 1 | | | | FN-3
FN-4 | 3 | | | | | l | | | | | | | | | | | | | | | FN-5 | İ | | | | | | | | | | | | | | | 1 | | | | | Unkeyed | 1
 | 1 | | | 1 | | | 3 | | _ | | ** | | | | 1 | 2 | | | Lactobacillus | | 1 | | 1 | | | 1 | | | 1 | | 2 | 1 | | 4 | 1 | - | _ | | | Enterococci | 2 | 1 | | 4 | 2 | 3 | 1
6 | 2 | 1
3 | | 6 | 5 | | | 1 | | | | 1 | | CN-1 | | | | | | _ | | | | | | 1 | | | | | | , | | | CN-2 | | | | | | 1 | | | | | | | | | | | | | | | Miscellaneous | | | | | | | | - , . | | | | | | | | | | <u> </u> | | | TOTAL | 4 | 6 | 3 | 7 | 2 | 7 | 7 | 2 | 7 | 2 | 6 | 8 | 1 | 0 | 5 | 2 | 2 | 2 | 1 | TABLE 16--- Continued | | * | | | | Hand | ler Nu | mber | | | | | |---|-----|---|----|------|------|--------|------|----|----|----|-----------------------| | Anaerobes | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Total | | FA-1
FA-2
FA-3
FA-4
FA-5
FA-6 | 1 1 | | | | 1 | | | | | | 1
2
1 | | FA-7
FA-8
FA-9
FA-10
FA-11
FA-12 | | 1 | 1 | 2(1) | 1 | 1 | 1 | 1 | 1 | 1 | 1
8
1
1
3 | | FA-12
FA-13
FA-14
FA-15
FA-16
FA-17
FA-18 | 1 | 1 | | 1 | | 1 | | | | | 1
3
1 | | GD-1
GD-2
GD-3
GD-4
GD-5
GD-6
GD-7 | 1 | 1 | | 1 | | 1 | | | | | 1 | | CT-1
CT-2
CT-3
Unkeyed | | | 3* | 1 | | | 2* | 2* | 2* | 2* | 12 | | TOTAL | 4 | 5 | 4 | 7 | 3 | 3 | 3 | 4 | 3 | 3 | 39 | | FN-1
FN-2
FN-3
FN-4
FN-5 | | | | | | | | | | | | | Unkeyed
Lactobacillus
Enterococci | | | | | 1 | | | 1 | | | 2 | | CN-1
CN-2
Miscellaneous | 1 | | 1 | | | | | | | | 2 | | TOTAL | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 4 | ^{*} Unable to transfer () Variation in pH Table 16 -- Continued | | Shi | irley ^{(a} | a) | Shor | tv ^(c) | , | Van ^(a) | Wa | lter | |------------------------------|-----|---------------------|--------------------|---------------------------------------|-------------------|----------|---------------------------------------|------------------|--------------------| | Anaerobes | 16 | 41 | 112 ^(c) | 140 | 156 | 5 6 | 3 110 ^(c) | 9 ^(a) | 168 ^(c) | | FA-1 | | | 1 | | | | | | 1 | | FA-2 | | | | | | | | | | | FA-3
FA-4 | | | | | | 1 | | 1
7 | 1 | | FA-5 | | | | | | | | 7 | 1 | | FA-6 | , . | | | | | | | | 1 | | FA-7 | | | | | | <u> </u> | | | | | FA-8 | | | | | | | 1 | | | | FA-9
FA-10 | | | | | 1 | | | | | | FA-10
FA-11 | | | | | | 1 | | | | | FA-12 | • | | | | | * | | | | | FA-13 | | | | | | | | | | | FA-14 | | | | 1
1 | | | | 1 | | | FA-15 | | | 4 | 1 | | | | | | | FA-16
FA-17 | | | | | | | | İ | | | FA-18 | | | 1 | | | | | | 1 | | GD-1 | | | | | | <u> </u> | | | | | GD-1
GD-2 | | | | | | | | | | | GD-3 | | | | 2 | | | | | | | GD-4 | | | | | | | | | | | GD-5 | | | | | | | | | | | GD-6
GD-7 | | | | | | | | İ | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | <u> </u> | | CT-1 | | | | | | | | | | | CT-2
CT-3 | | | | | | | | | | | Unkeyed | | 1 | 3 | | | 1 1 | | | | | TOTAL | 0 | 1 | 9 | 4 | 1 | 2 2 | 1 | 9 | 4 | | FN-1 | | | | <u> </u> | | | | | * | | FN-1
FN-2 | 2 | 4 | | | | | 1 | 2 | | | FN-3 | ĩ | • | | | | | • | | | | FN-4 | 1 | | | | | | | | | | FN-5 | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | Unkeyed | 2 | | 1* | | | 3 | 1** | 1 | | | Lactobacillus
Enterococci | 1 | | 2 | 2 | | 2 1 | 2
4 | | 1
2 | | CN-1 | - | ··· | - | | | 2 1 | * | | | | CN-2 | | | l | | | | | | | | Miscellaneous | | . ,. | | | | | | | | | TOTAL | 7 | 4 , | 4 | 2 | 0 | 5 1 | 8 | 3 | 3 | ^{*} salivarius ^{**} veillonella Table 16 -- Continued | | | | | | | | | _ | | F | Red | (b) | | | | | | 7(a) | 13(a) | 63(c) | |----------------|------------------|----|----|----|---|---|-------------|----|----|----------|-----|-----|--------------|-----|-----|-----|----------|------|-------|-------| | Anaerobes | 9 | 19 | 27 | 47 | | 3 | 49 | 75 | 68 | | 3 | | 123 | 133 | 147 | 797 | 891 | 7 | 13 | 163 | | FA-1 | | | 3 | | 1 | | 1 | | | | | | | 2 | | | 1 | | | | | FA-2 | | | | | | ı | | 1 | | | | | | | | | | | 1 | | | FA-3 | | | | | | ı | | | | | | | 1 | | | | | | | İ | | FA-4 | | | | | | | | | | | | | | | | | | | 1 | l | | FA-5 | | | 1 | | | | | | | | | | i | | | | į | | 2 | | | FA-6 | | | 1 | | 1 | | | | | | | | | | | | | | ī | | | FA-7 | | | | | | | | | | | | | | | | | | | ī | 1 | | FA-8 | 4 | | | 1 | L | | 1 | | | | | | | | | | | | _ | | | FA-9 | | | | | | | 1 | | | | | | | | | | | | | | | FA-10
FA-11 | | | | | | | | | | | | | | | 1 | | | | | | | FA-11
FA-12 | | | | | | | } | | | | | | | | | | | | | | | FA-13 | - | | | | | | - | | | | | | | | | | | | | | | FA-14 | | | | | | | 1 | | | | | | | | | 1 | | | 1 | | | FA-15 | | | | | 1 | l | | | | | | | 1 | | | | | | | | | FA-16 | l | | | | | | | | | | | | | _ | | | İ | | | | | FA-17 | | | | | | | 1 | | | | | | 2 | 2 | | | | | | | | FA-18 | | | | | | | i | | | | | | Ì | 1 | | 1 | | | | | | GD-1 | GD-2 | | | | | | | | | | | | | | | | | 1 | | | | | GD-3 | GD-4 | 1 | | | | | | 1 | | | | | | 1 | | | | | | | | | GD-5 | 1 | | | | | | 1 | | | | | | l | | | | | | | | | GD-6 | 1 | | | | | | | | | | | | ļ | | | | | | | | | GD-7 | | | | | | | <u> </u> | | | | | | <u> </u> | | | | | | | | | CT-1 | | | | | | | | | | | | | 1 | | | | 1 | | | | | CT-2 | | | | | | | i | | | | | | l | | | | | | | | | CT-3 | | | | | | | | | | | | | | | | 2 | | | | 1 | | Unkeyed | 2 | | | | | | <u> </u> | | | 1 | | | <u> </u> | | | | <u> </u> | | | | | TOTAL | 6 | | 0 | 5 | 1 | 3 | 2 | | 1 | 1 | 0 | 0 | 4 | 5 | 1 | 4 | 2 | 0 | 7 | 1 | | FN-1 | 1 | | 4 | | | | T | | | _ | | | T | | | | 11 | | | | | FN-2 | 1 | | 3 | | 1 | 2 | 1 | | 1 | 2 | | | 1 | | | | 1 | | | | | FN-3 | | | | | | | | | | | | | 1 | | | | | | 2 | | | FN-4 | | | | | | | 1 | | | | | | | | 1 | | 2 | | 4 | | | FN-5 | 1 | | | | 0 | | — | | | | | | | | | 2 | +- | | | | | Unkeyed | ı | | | | 2 | | 1 | | | | 2 | | | | | 4 | 1 | | | | | Lactobacillus | 2 | | | 1 | 1 | 1 | 3 | | 8 | 5 | 3 | 4 | 5 | 7 | | - | - | 5 | | 3 | | Enterococci | | | | | 1 | | +- | | | <u> </u> | | | +- | - | | | + | | | | | CN-1
CN-2 | | | | | | | | | | | | | | | | | 1 | | | | | Miscellaneous | 1 | | | | | | | | | | | | | | | | 1 | | | | | TOTAL | 3 | | 7 | 1 | 4 | 3 | 3 | | 9 | 7 | 5 | 4 | 6 | 7 | 1 | 6 | 4 | 5 | 2 | 3 | | TOTAL | | | _ | _ | | | <u></u> | | | | | | <u> </u> | | | | <u> </u> | | | | Table 16 -- Continued | | | | | | | | | | | Mar | _c (b) | | | | | - | <u> </u> | <u>ව</u> | |----------------|--------------|---------------|--------|----|------------------|--------------|----|----|----|-----|------------------|-------------|---------------------------------------|-------------|----------|---------------|----------|-------------| | Anaerobes | 2 | 14 | 26 | 37 | 56 | 61 | 73 | 88 | 98 | 111 | 121 | 132 | 143 | 153 | 16 |)61 | (25(c) | (c)
1981 | | FA-1 | | | | | 1 | | | | | | T | | 2 | | 2 | 1 | | | | FA-2 | | | | | | | | 2 | | | | | | | | | | | | FA-3 | | | | | | | | | | | 1 | | | | | | | | | FA-4 | ļ | | | | | | | | 3 | | 1 | | | | | | | | | FA-5
FA-6 | | | | | | 1 | | | | | 1 | | | | l | | | 1 | | FA-7 | - | | | | | - | | | | 1 | ╄ | | | | | | | 1 | | FA-8 | 3 | 2 | | | | | 1 | | | | 1 | | | | | | | | | FA-9 | ľ | - | | | | | - | | | | | | | | | 1 | | i | | FA-10 | | | 1 | | | | | | | | | | | | | - | | | | FA-11 | FA-12 | | | | · | | L | | | | | | _ | | | <u> </u> | | 1 | | | FA-13 | | | | | | Γ | | | | | | | | | | | | | | FA-14 | | | | | | | 1 | | | | ١. | | | | | | | | | FA-15
FA-16 | l | | | | | | | | | | 1 | | | | i | | | | | FA-17 | | 2 | | | | | | | 2 | | | | | | | | | | | FA-18 | | _ | | | | ļ | | | _ | | ĺ | | | | | | | | | GD-1 | - | | بهندست | | -> | ├ | | | | | ╁ | | · · · · · · · · · · · · · · · · · · · | | } | | | | | GD-2 | | | | | | | | | | | 1 | | | | | | | | | GD-3 | | | | | | | | | | | 1 | | | | | | | | | GD-4 | GD-5 | | | | | | | | | | | Ī | | | | | | | | | GD-6 | GD-7 | CT-1 | | | | | | | | | | | | | | | | 1 | | | | CT-2 | | | | | | 1 | | | | | ļ | | | | | | | | | CT-3 | | | _ | | | ł | _ | _ | _ | | ì | | | | | | | | | Unkeyed | 2 | . | 2 | | | | 2 | | 1 | | | | | 1 | ļ | | | 7 | | TOTAL | 5 | 4 | 3 | 0 | 1 | 1 | 4 | 4 | 6 | 1 | 1 | 0 | 2 | 1 | 2 | 3 | 1 | 2 | | FN-1 | | | | | | | | | | | | | | | | 1 | | | | FN-2 | 1 | | 1 | | | 2 | | | | | | | | | | | | | | FN-3
FN-4 | | • | | | | | | | | | | | | | | | | | | FN-4
FN-5 | | 1 | | | | | | | | | 1 | | • | | İ | | | | | Unkeyed | | | | | | | 3 | 1 | | | ┼ | | $\frac{1}{1}$ | | | | | | | Lactobacillus | Ī | | 1 | | | | J | 1 | | 1 | | 1 | 1 | | | | 3 | 1 | | Enterococci | | 1 | 2 | 5 | 3 | 3 | 2 | î | | _ | 11 | 10 | | | l | | 2 | 2 | | CN-1 | | | | | | | • | | | | <u> </u> | Ī | | | <u> </u> | - | | | | CN-2 | | | | | | | | | | | | | | | 1 | | | | | Miscellaneous | | <u></u> | | | | | | | | | | | · . | | | | | | | TOTAL | 1 | 2 | 4 | 5 | 3 | 5 | 5 | 3 | 0 | 1 | 11 | 12 | 2 | 0 | 1 | 1 | 5 | 3 | Table 16 -- Continued | | | | | | | | Dona | ald (b |) | | | | | | | | |---|-------------|------------------|----------------|-------------|-----|----|------|--------|-----|-------|--------|----|-------|-------|------|-------| | Anaerobes | 11 | 22 | 32 | 42 | 54 | 67 | 77 | 94 | 100 | 114 1 | 30 1 | 41 | 150 1 | L59 1 | 70 1 | 48(6) | | FA-1
FA-2
FA-3
FA-4
FA-5 | | | - | | 1 1 | 3 | 1 | 1 | 2 | | | | | 1 | , | | | FA-6
FA-7
FA-8
FA-9
FA-10
FA-11
FA-12 | 2 | 1 | | | 1 | 1 | 1 | | | | 2 1 | | | | 1 | 1 | | FA-13
FA-14
FA-15
FA-16
FA-17
FA-18 | | | | | | | | | 1 | | 1 | | 1 | 1 | | 1 | | GD-1
GD-2
GD-3
GD-4
GD-5
GD-6
GD-7 | | -
(1) | | | | | | - | | | | | 1 | | | | | CT-1
CT-2
CT-3
Unkeyed | 1 | | | | | | | | 1 | 1 | 1 | 1 | | 4 | | | | TOTAL | 4 | 1 | 0 | 0 | 3 | 4 | 2 | 1 | 4 | 1 | 5 | 1 | 2 | 6 | 1 | 2 | | FN-1
FN-2
FN-3
FN-4 | | 3 | 1 | | | | 1 | 1 | | | | | | | 1 | | | FN-5 Unkeyed Lactobacillus Enterococci CN-1 | 3
1
1 | | 1 | 1
3 | 1 | 7 | 1 | 2 | 1 | 1 | 1
5 | 2 | 1 | 2 | 4 | 1 3 | | CN-2
Miscellaneous
TOTAL | 5 | 4 | 2 | 4 | 2 | 7 | ' 4 | 1 5 | 1 | 5 | 6 | 3 | 1 | 2 | 5 | 4 | Table 16 -- Continued | | | | | | - | | |]
& | Deni | se | (b) | | | | | (g | (B) | <u> </u> | <u></u> | |-----------------|--------------|-----|---------|------|-------------|----|-------------|-------------|------|-----|----------|-----|-----|-----|-------------|----------|-----|----------|------------| | Anaerobes | u. | 1.0 | 1 | 7, 7 | 4 4
5 5 | 63 | 76 | 96 | 102 | 120 | 122 | 134 | 146 | 161 | 169 | 1 | 12 | 126(c) | (c)
(c) | | FA-1 | Γ | _== | | | | 2 | | | | | П | | | | | T | | | 1 | | FA-2 | 1 | | | | | 1 | | | | | 1 | | | | | | | | | | FA-3 | • | | | | | 1 | | | | | | | | | | | | | | | FA-4 | | | | | | | | | | | | | | | | 1 | | | | | FA-5
FA-6 | | 4 | ı | | | 1 | | | | | | | | | | 1 | | | | | FA-7 | | 1 | | | | ╂— | | | | | — | | 1 | | | - | 1 | | | | FA-8 | 2 | | | | | | | | | | 1 | | | | | 1 | 1 | | 1 | | FA-9 | - | 1 | L | | | | | | | | * | | | | | * | _ | | 1 | | FA-10 | | | - | | | | | | | | | | | | | | | 1 | | | FA-11 | | | | | | 1 | | | | | | | | | | | | | | | FA-12 | | | | | 1 | 1 | | | | | | | | | | | | | | | FA-13 | _ | | | | | | | | | | | | | _ | | | | | | | FA-14
FA-15 | | | | | 2 | | | | | | | | 2 | 1 | | 1 | | | | | FA-15
FA-16 | | | | | Z | 1 | | | | | | | | | | l | | | | | FA-17 | | | | | | i | | | | | | 1 | | | | | | | | | FA-18 | | | | | | | | | | | | • | | 1 | | l | | | | | GD-1 | | | • | | - | | | | | | <u> </u> | | | | | T | | - | | | GD-2 | GD-3 | | | | | | 1 | | | | | | | | | | | | | | | GD-4 | | | | | | 1 | | | | | | | | | | | | | | | GD-5
GD-6 | GD-7 | | | | | | 1 | | • | | | | | | | | | | | | | CT-1 | | | <u></u> | | | ╀━ | | | | | | | | | | ┼- | | | | | CT-2 | | | | | | 1 | | 1 | | | | 1 | | | | 1 | | | | | CT-3 | | | | | | | | 1 | | | | + | | 1 | | | | | | | Unkeyed | 1 | 2 | 1 | | 1 | | 1 | | | | 1 | | | î | | 1 | 1 | | | | TOTAL | 4 | 4 | 1 | 0 | 4 | 4 | 1 | 1 | 0 | 0 | 3 | 2 | 3 | 4 | 0 | 4 | 3 | 1 | 2 | | FN-1 | | 3 | 1 | | | | 1 | | | | | | | | | T | 2 | | | | FN-2 | 1 | | | | | 1 | 2 | | 1 | | | | 1 | | | | 1 | 1 | | | FN-3 | FN-4 | | | | | | | | | | | | | | | | 1 | | 1 | | | FN-5
Unkeyed | <u> </u> | | 1 | | | - | | | 2 | | | | | | | | | | | | Lactobacillus | 1 | 1 | _ | | | | | 1 | | | | 1 | 1 | 1 | 1 | 1 | 2 . | 6 | ; | | Enterococci | | | 2 | 3 | 2 | 3 | 4 | 2 | 2 | | 6 | 5 | 3 | | * | * | | U | 2 | | CN-1 | | | | | | 1 | | | | | \vdash | | | | T | \vdash | | | | | CN-2 | | | | | | | | | | | | | | | 1 | | | | | | Miscellaneous | | | | | | | | | | | _ | | | | | L | | | | | TOTAL | 3 | 5 | 4 | 3 | 2 | 4 | 7 | 3 | 5 | 0 | 6 | 6 | 5 | 2 | 3 | 2 | 5 | 8 | 2 | Table 16 -- Continued | | Cheste | er (c) | Cl | ay (c) | Ι | earl | (c) | De | bbie | |----------------|----------|--------|--------------|---------------------------------------|--|------|------------|-------------------|--------------------| | Anaerobes | 128 | 150 | 133 | 154 | 121 | 132 | 8 A | 21 ^(a) | 20A ^(c) | | FA-1 | | | | 1 | | | | | | | FA-2 | | | | 1 | | | | 3 | | | FA-3 | | | | 1 | | | | " | ł | | FA-4 | | | İ | | | | | | | | FA-5 | | | 1 | | į | | | ļ | | | FA-6
FA-7 | | | | | | | | | | | FA-8 | | 1 | | | 1 | | 1 | | | | FA-9 | | | İ | | ł | 1 | | | | | FA-10 | | | | | | | | 1 | | | FA-11 | ì | |] | | ł | | | | | | FA-12 | | | ļ | | | | | - | | | FA-13 | 1 | | 1 | 1 | | | 1 | | | | FA-14
FA-15 | Į. | 1 | | $\hat{f 2}$ | | | _ | | | | FA-15
FA-16 | | - | | | 1 | | | | | | FA-17 | | 1 | 1 | | -[| | | | | | FA-18 | 1 | 1 | 1 | | | | | | | | GD-1 | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | GD-2 | | | | | 1 | | | | | | GD-3 | | 1 | | | 1 | | | 1 | | | GD-4 | | | | | 1 | | | 1 | | | GD-5 | 1 | | İ | | 1 | | | | | | GD-6 | | | l | | 1 | | | | | | GD-7 | <u> </u> | | <u> </u> | - , | + | | | | | | CT-1 | | | 1 | | | | | | | | CT-2 | | | ١. | | 1 | | | Ì | 1 | | CT-3 | | | 1 | | ŀ | | 1 | | - | | Unkeyed | ļ | | | | +- | | | +, | 1 | | TOTAL | 1 | 5 | 1 | 5 | 1_1_ | 1 | 3 | 4 | | | FN-1 | | | | | | | | 1 | | | FN-2 | | | 1 | | | | | | | | FN-3 | | | 1 | | | | | | 1 | | FN-4
FN-5 | | | | | 1 | | | | | | Unkeyed | 2 | | 1 | | | | 1 | | _ | | Lactobacillus | 1 | 1 | 1 | | | _ | | | | | Enterococci | 1 | | 4 | <u>,</u> | 10 | 3 | | | | | CN-1 | | | | | | | | 1 | 1 | | CN-2 | | | | | | | | | | | Miscellaneous | 4 | | | | 10 | | | 0 | 2 | | TOTAL | 4 | 1 | 6 | 0 | 10 | 3 | | | | Table 16 -- Continued | | Π | R | i II v | (a) | | Bob (| (c) | | Brian | (c) | - | | | (a) | |----------------|----------|----|--------|--------------------|-----|-------|-----|--------------|-------|--------------|----------|-------------|------------------|--------------------| | Anaerobes | 24 | 46 | 69 | 116 ^(c) | 139 | 100 | 153 | ı | | | 25 | 40 | <u>ary</u>
45 | 18A ^(c) | | FA-1 | T | | | | | | | | | | | AV | | 1041 | | FA-2 | 2 | | | | | | | | | | l | | | | | FA-3
FA-4 | Z | | | | | | | | | • | | 3 | | | | FA-5 | l | 1 | | | | | | | | 1
1 | l | 1 | | | | FA-6 | | 1 | | 1 | | | | | | • | l | _ | | | | FA-7 | | | | | | | | | | | | | | | | FA-8 | 1 | | | 1 | | | | | | | | | | | | FA-9
FA-10 | 1 | | | | | | | | | | 1 | 2 | 1 | | | FA-11 | l | | | | | | 1 | | | | 1 | | | | | FA-12 | 1 | | | | | | 1 | | | | | | | | | FA-13 | <u> </u> | | | | | | | | | | | | | | | FA-14 | 1 | | | | 1 | | | | | | | 1 | | | | FA-15 | 1 | | | | | | | | | | | | | | | FA-16 | | | | | | | | 1 | | | | | | | | FA-17
FA-18 | } | | | | | | 1 | | | | l | | | | | | ļ | | | | | | 1 | ļ | | | | | | | | GD-1
GD-2 | 1 | | | | | | | | | | | | | | | GD-2
GD-3 | | | | | | | | | | | | | | | | GD-4 | | | | | | | | Ì | | | | | | | | GD-5 | | | | | | | | | | | | | | | | GD-6 | i | | | | | • | | • | | | | | | | | GD-7 | | | | 1 | | | | | | | | | | | | CT-1 | | | | | | | | | | | | | | | | CT-2 | | | | | | | | } | | | | 1 | 1 | | | CT-3 | | | _ | _ | | | _ | | | | 1 | | | | | Unkeyed | 1 | | 1 | 1 | | | 1 | 1 | | 1 | 1 | _1 | | | | TOTAL | 6 | 2 | 1 | 4 | 1 | | 4 | 1 | 0 | 3 | 2 | 9 | 3 | 0 | | FN-1 | İ | _ | | | 1 | | | | | | | | | | | FN-2
FN-3 | 1 | 1 | | | | | | | | 1 | | | | 1 | | FN-4 | | | | | | | | | | | | | • | | | FN-5 | | | | | | | | | | | | | 2 | | | Unkeyed | | 1 | | | | · | | | 1 | | | | 2 | | | Lactobacillus | | 2 | 1 | 4 | | | | | • | | | | ~ | | | Enterococci | | | 2 | 2 | 1 | | | 6 | 6 | | 1 | | 3 | | | CN-1
CN-2 | | | | | | | | | | 1 | | | | 1 | | Miscellaneous | | | | | | | | | 1* | | | | | | | TOTAL | 0 | 4 | 3 | 6 | 2 | | 0 | 6 | 8 | 2 | 1 | 0 | 7 | 2 | | | | | | | | | | | | | <u> </u> | | | | ^{*} Mixed Table 16 -- Continued | | | Andy (| (c) | | Annie | | | Betty | (a) | | |----------------|------------|-------------|------|------------------|--------------------|-----|----|-------|--|---------------------| | Anaerobes | 122 | 130 | 12A | 6 ^(a) | 118 ^(c) | 22 | 35 | 43 | 61 | C-1A ^(c) | | FA-1 | | | | | | 1 | · | | | | | FA-2 | | | | | | 1 | | | | ĺ | | FA-3 | | | | i | | | | | | | | FA-4 | | | | | | İ | | - 1 | | | | FA-5 | | | | 2 | | 1 | | | | İ | | FA-6 | | | 7 | | | | 1 | | | | | FA-7 | | | | | | 1 | | , | | | | FA-8 | 2 | | | | | İ | | 1 | | | | FA-9 | | | | | | | | | | | | FA-10 | | | | | | | | | | | | FA-11 | | | | | | | | | | | | FA-12 | | | | ļ | | + | | | | | | FA-13 | 1 | | | 1 | | 1 | | | | | | FA-14 | | | | 1 | 1 | | | | | | | FA-15 | | | | } | 1 | | | | | | | FA-16
FA-17 | | | | 1 | | l l | | | | | | FA-17
FA-18 | | | | ļ | | l l | | | ! | 1 | | | | | | | | | | | | | | GD-1 |
 | | | | | | | | | | | GD-2 | | | | | | | | | | | | GD-3 | | | | | | | | | | | | GD-4 |] | | | Ì | | | | | | | | GD-5 | | | | | | | | | | 1 | | GD-6 | | | | 1 | | | | | 1 | 1 | | GD-7 | | | · | ļ | | | | | | | | CT-1 | | | | } | | | | | | | | CT-2 | | | | | | | | | | | | CT-3 | | | | 1 | | 1 | | | | | | Unkeyed | 1 | | | 1 | 11 | | | | | | | TOTAL | 3 | 0 | 0 | 3 | 2 | 0 | 1 | 1 | 0 | 2 | | FN-1 | | | 1 | | | 2 | 2 | 0 | | 1 | | FN-2 | 1 | | | | | 1 | | 5 | | 1 | | FN-3 | l | | | | | | | | | | | FN-4 | 1 | | | | | 1 | | 1 | 1 | | | FN-5 | ļ | | | | 1 | | | | | | | Unkeyed | | | | 2 | | 1 | 3 | | 1. | | | Lactobacillus | 1 | _ | | 2 | 6 | | 2 | | 2 3 | | | Enterococci | 6 | 5 | | 1 | 2 | 2 | | | 13 | | | CN-1 | | | 1 | | 1 | | | | | 1 | | CN-2 | 1 | | | | 1 | 1 | | | | 1 | | Miscellaneous | - | | ···· | | | | | - | + | | | TOTAL | 6 | 5 | 2 | 5 | 4 | 5 | 7 | 6 | 5 | 3 | ⁽a) RAC 1095-5FR, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," AF29(600)-4124, Dec. 1964 (b) RAC 1787-5FR, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee, "AF29(600)-4555, May 1965 RAC 2544 (quarterly reports), "Study of the Fecal Bacterial Population of Chimpanzees, "AF29(600)-4991 170 Table 16 -- Continued | | T | | | | | | | | | | |---------------|--------------|-------------|---|----------|----------|---------------------------------------|-----|--|-------------|-------------| | Anaerobes | - | | | | impanzee | Number | | , | |
 | | | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | | FA-1 | 1 | 1 | | | | | | | | | | FA-2 | Ì | | | | | ł | | | | | | FA-3 | <u> </u> | | | | | | | | | | | FA-4 | l | | | | | | , | | | | | FA-5 | | | | | | İ | | | | | | FA-6 | | | | | 11 | | | | | | | FA-7
FA-8 | | _ | | | _ | | | | | | | FA-9 | | 1 | | | 2 | | 1 | 1 | | 1 | | FA-10 | | | | <u> </u> | | | · | <u> </u> | | | | FA-11 | | | | | | 1 | | 1 | | | | FA-12 | I | | | | | | | | | | | FA-13 | <u> </u> | | | | | | | ļ | | | | FA-14 | | | | | | | | | | | | FA-15 | 1 | | | | | | 1 | | 1 | | | FA-16 | - | | | | | | | | | | | FA-17 | | | | | | | | | | | | FA-18 | | | <u>. </u> | | | | | | | | | GD-1 | | - | | | | | | | | | | GD-2 | | | | _ | | | | l | | | | GD-3 | | | | ٠ | | | | | | | | GD-4 | | | | | | | | | | | | GD-5
GD-6 | | | | | | | | | | | | GD-7 | | | | * | | • | | | | | | Unkeyed | | | | | • | | _ | | | | | Chreyed | - | - | 1 | | 6 | | 1 | 1 | | | | TOTAL | 2 | 2 | 1 | 0 | 9 | 0 | 3 | 2 | 1 | 1 | | FN-1 | | | | | | | | | | | | FN-2 | | | | | | | · i | 1 | | | | FN-3 | | | j | | | | | | | | | FN-4 | | | | | | | | • | | | | FN-5 | | | | J | | | | | | | | Unkeyed | 1* | | 1* | 1* | | · · · · · · · · · · · · · · · · · · · | | | | | | Lactobacillus | 1 | 1 | ī | - | 1 | | | | | | | Enterococci | 5 | 6 | 8 | 10 | _ | 6 | 6 | 8 | 4 | 8 | | Miscellaneous | | | | | | _ | v | | * | U | | TOTAL | 7 | 7 | 10 | 11 | 1 | 6 | 6 | 8 | 4 | 8 | FA & CT = Obligate Anaerobes FN = Faculative Anaerobes * Salivarius Table 16 -- Continued | | | | | Chimpanze | e Number | , | | | | |---------------|---|-----|----------|-------------|-------------|----------|--------------|-----|-----| | Anaerobes | 110 | 111 | 112 | 113 | 115 | 116 | 117 | 118 | 120 | | FA-1 | | | 1 | - | | | | | | | FA-2 | 1 | | | 1 | | | | | i | | FA-3 | ↓ | | | | | | | | | | FA-4 | 1 | | | | 1 | | 1 | • | 1 | | FA-5 | 1 | | | | | 1 | ŀ | | | | FA-6
FA-7 | | | | | + | | | | | | FA-8 | 1 | 1 | | | | 1 | 1 | | 1 | | FA-9 | 1 * | • | | | | | | | | | FA-10 | † | | | 1 | | | | | | | FA-11 | 1 | | | | | | | | | | FA-12 | 1 | | | | | | | | | | FA-13 | 1 | | | | | | | | | | FA-14 | 1 | | | · · · · · · | | | 1 | _ | | | FA-15 | 1 | | 4 | | | | | 1 | | | FA-16 | | | | | | | | | | | FA-17 | | | | | | | l' | | | | FA-18 | | | 1 | | 2 | | | | | | GD-1 | | | | | | | | | | | GD-2 | | | | | 1 | | 1 | | | | GD-3 | 1 | | | | l | | İ | | | | GD-4 | 1 | | ··· | | | | | | | | GD-5 | 1 | | | | 1 | | ı | | | | GD-6 | | | | | } | 1 | | | | | GD-7 | İ | 2 | 3 | • | 2 | 1
1 | 2 | 1 | 1 | | Unkeyed | _ | Z | <u>ა</u> | | | <u> </u> | | | | | TOTAL | 1 | 3 | 9 | 2 | 4 | 4 | 3 | 2 | 2 | | FN-1 | | | | | | | | | | | FN-2 | 1 | | | | | | | | | | FN-3 | 1 | | | | | | Į | | | | FN-4 | | | | | 1 | | | | | | FN-5 | | | | | | • | | . 1 | | | Unkeyed | 1* | | (1) | | | | | | | | Lactobacillus | 2 | 7 | (1)
2 | 3 | | 4 | 1 | | | | Enterococci | 4 | • | 1 | 3
2 | 2 | 2 | 8 | 2 | 8 | | Miscellaneous | - | | _ | | | | | 1 | | | TOTAL | 8 | 7 | 4 | 5 | 2 | 6 | 9 | 4 | 8 | FA Obligate Anaerobes Faculative Anaerobes FN * Salivarius (1) Pathogenic staph Table 16 -- Concluded | | T | | · | | - | | | | | | | |----------------|--------------|-----|-----|--------------|---------------------------------------|--------------|-----|---------------------------------------|--------------|-----|----------| | l | | | | | Chim | panze | В | | | | | | Anaerobes | 125 | 144 | 127 | 158 | 160 | 161 | 171 | 172 | 168 | 119 | 173 | | FA-1 | | | | | | | | 1 | 1 | | | | FA-2 | | | | | | i | | _ | | | | | FA-3 | | | | | | | | 1 | 1 | | | | FA-4 | | | | | | | | | | | | | FA-5 | | | | 1 | | | | | . 1 | | | | FA-6
FA-7 | | | | | | | | | | | | | FA-8 | | | | | 2 | 2 | 1 | 1 | | | | | FA-9 | | | | | 2 | 2 | . * | | | | | | FA-10 | | | | | | | | | | * | 1 | | FA-11 | l | | | | | | | | İ | | | | FA-12 | 1 | | | <u> </u> | | | | | | | 1 | | FA-13 | | | | | | | | | | | | | FA-14 | | 2 | | | | | 1 | 1 | | | 1 | | FA-15
FA-16 | | Z | | ├ | | | | 1 | ļ | | <u> </u> | | FA-10
FA-17 | | 1 | | | | | | 1 | | | • | | FA-18 | | - | | | | 1 | | • | 1 | 1 | | | GD-1 | | | | | | | | | | | | | GD-1
GD-2 | ŀ | | | | | | | | | | | | GD-3 | | | | | | | Ī | | | | | | GD-4 | | | | | | | | | | | | | GD-5 | | | | | · · · · · · · · · · · · · · · · · · · | | | | | · | | | GD-6 | ŀ | | | · · | | | | | | | | | GD-7 | ł | | | | | | | | ļ | | | | Unkeyed | <u> </u> | | | | | | | | <u> </u> | 1 | | | TOTAL | 1 | 3 | 0 | 1 | 2 | 3 | 2 | 5 | 4 | 2 | 3 | | FN-1 | | | | | | | | | | | | | FN-2 | l | | | | | | | | | | | | FN-3 | 1 | | | <u> </u> | | | | | | | | | FN-4 | l | | | | | | | | İ | | | | FN-5 | | | | | er er | | | | 1 | | | | Unkeyed | | | | | | | | | | 1 | | | Lactobacillus | 3 | | 1 | 3 | | | | | 1 | î | 1 | | Enterococci | 2 | | 1 | 1 | 1 | 1 | 2 | | 2 | . 8 | 1 | | Miscellaneous | | | | | | | | | | | | | TOTAL | 5 | 0 | 2 | 4 | 1 | 1 | 2 | 0 | 3 | 10 | 2 | | | | | | | * | * | | · · · · · · · · · · · · · · · · · · · | | | | # TABLE 17. DISTRIBUTION OF TYPE CULTURES IN COMPARATIVE CHIMPANZEE STUDIES ACCORDING TO OCCURRENCE | AF29(600 |)-4124 ⁽¹⁾ | AF29 (600 |)-4555(2) | AF29(600 |) -4 991 | |------------------------|---------------------------|------------------------|---------------------------|------------------------|--------------------| | Type
<u>Culture</u> | Number
<u>Isolated</u> | Type
<u>Culture</u> | Number
<u>Isolated</u> | Type
<u>Culture</u> | Number
Isolated | | FA- 8 | 50 | FA-8 | 42 | FN group | 126* | | FA-1 | 33 | FA-3 | 21 | FA-8 | 34 | | FA- 2 | 25 | FA-6 | 14 | CT group | 32* | | FA-6 | 22 | FA-5 | 12 | CN-1 | 17 | | FA-17 | 22 | FA-4 | 11 | FA-1 | 16 | | FA-5 | 20 | CT-1 | 11 | FA-13 | 14 | | FA-15 | 19 | FA-14 | 10 | FA-18 | 20 | | FA-3 | 18 | FA-9 | 9 | FA-3 | 11 | | FA-14 | 15 | FA-1 | 8 | FA-17 | 9 | | FA-1 8 | 15 | FA-10 | 8 | GD-3 | 9 | | CT-1 | 10 | FA-7 | 6 | FA-5 | 7 | | FA-4 | 8 | FA-12 | 6 | FA-10 | 7 | | FA-10 | 7 | FA-2 | 5 | GD-6 | 7 | | CT-3 | 7 | FA-11 | . 5 | CT-3 | 7 | | FA-12 | 6 | FA-13 | 4 | FA-9 | 6 | | CT-2 | 6 | CT-2 | 4 | FN-1 | 6 | | FA-7 | 5 | FA-15 | 3 | FA-6 | 5 | | FA-9 | 4 | FA-16 | 0 | FA-9 | 6 | | FA-11 | 3 | FA-17 | 7 0 | GD-5 | 5 | | FA-16 | 2 | | | FN-2 | 5 | | GD-2 | 2 | | | FN-4 | 5 | | GD-7 | 2 | | | FA-4 | 3 | | FA-13 | 1 | | | FA-12 | 3 | | GD-1 | 1 | | | FA-14 | 3 | | GD-4 | 1 | | | FA-16 | 3 | | GD-5 | 1 | | | FN-3 | 3 | | GD-3 | 0 | | | CN-2 | 3 | | GD-6 | 0 | | | CT-1 | 3 | ^{*}These cultures from first field trip were not keyed as far as subsequent groups. # Table 17 -- Concluded | AF29(60 | 0)-4991 | (cont'd) | · · | |-----------------|--------------------|----------|-------------| | Type
Culture | Number
Isolated | | | | FA-2 | 2 | | | | | 2 | 4. • | ÷ . | | CT-2 | 2 | ~ | J. A. | | FA-7 | 1 | 10 m | Š. | | FA-11 | 1 | | , . · · · · | | GD-1 | 1 | • | | | | | : | | | | •1 | 1. | • | | | | - | | 1974 AN 1974 AN 1984 AN ξ, # TABLE 18. DISTRIBUTION OF TYPE CULTURES IN COMPARATIVE HUMAN STUDIES ACCORDING TO OCCURRENCE | NASw-7 | 738 ⁽³⁷⁾ | AF33(615) |)-1814 ⁽³⁹⁾ | NAS -9- | 172 ⁽⁵¹⁾ | AF29(600)-
Handlers | | |--------|---------------------|------------------------|---------------------------|---------------------|---------------------|----------------------------|-------------------| | Type D | Number
Isolated | Type
<u>Culture</u> | Number
<u>Isolated</u> | Type N
Culture I | lumber
solated | Type N
<u>Culture</u> I | lumber
solated | | FA-1 | 126 | FA-15 | 206 | FA-1 | 64 | Unkeyed | 12 | | FA-15 | 116 | FA-3 | 111 | FA-15 | 58 | FA-8 | 8 | | FA-3 | 92 | FA-18 | 76 | FA-3 | 20 | FA-12 | 3 | | FA-5 | 75 | FA-12 | 74 | FA-14 | 20 | FA-15 | 3 | | FA-12 | 58 | FA-1 | 66 | FA-18 | 20 | GD-7 | 3 | | FA-6 | 57 | FA-14 | 56 | GD-3 | 18 | FA-4 | 2 | | FA-14 | 54 | FA-5 | 54 | FA-6 | 12 | GN-1 | 2 | | FA-8 | 43 | FA-17 | 53 | FA-17 | 12 | FA-2 | 1 | | FA-10 | 35 | FA-9 | 49 | FA-5 | 11 | FA-5 | 1 | | FA-17 | 33 | FA-8 | 43 | FA-12 | 10 | FA-7 | 1 | | FA-2 | 26 | FA-6 | 40 | FA-8 | 7 | FA-10 | 1 | | FA-16 | 16 | GD-6 | 38 | FA-2 | 6 | FA-11 | 1 | | FA-11 | 11 | FA-10 | 37 | GD-4 | 5 | FA-14 | 1 | | FA-7 | 10 | GD-3 | 23 | GD-5 | 5 | FA-16 | 1 | | FA-9 | 10 | GD-1 | 22 | FA-9 | 5 | GD-4 | 1 | | FA-13 | 8 | FA-2 | 15 | FA-7 | 4 | | | | FA-4 | 7 | FA-16 | 14 | FA-10 | 4 | | | | | | GD-5 | 13 | GD-6 | 3 | | | | · · | | GD-2 | 12 | FA-16 | 2 | | | | | | GD-7 | 12 | GD-7 | 2 | | | | | | GD-4 | 11 | FA-4 | 1 | | | | | | FA-4 | 8 | FA-11 | 0 | | | | | | FA-13 | 8 | GD-1 | 0 | | | | | | FA-11 | 7 | GD-2 | 0 | | | TABLE 19. SCREEN TEST FOR PREDOMINATING OBLIGATE AND FACULTATIVE ANAEROBIC FECAL BACTERIA | 푎 | 7.0 | | 6.4 | | 7.0 | | 9.6 | | | | 9. | | |-----------------|--|----------------------|--|----------|--|----------------------|--|----------------|---|-------------|--|---------------------| | Gelatin | no liquefaction | | no liquefaction | | no liquefaction | : | no liquefaction | | no ilquefaction | | no Mquefaction | | | Litmus Milk | delayed ARC*
with protectysis | | delayed ARC*
with proteclysis | | delayed ARC*
with protectysis
and gas | | ARC* strong
delayed
proteolysis | | delayed ARC*
with proteclysis | | ARC* | - | | Blank | + | ŧ. | # | # | 4+ slimy
sediment | 4+
black
sediment | 2+
sediment | 2+
sediment | #1 | . 41 | + slight
slime | + slight
slime | | Dextrin | † | 2+ slight
slime | #1 | + | 4+ slimy
sediment | 4+ black
sediment | 2+ sediment | 2+ sediment | 4+ slime | 4+ slime | 3+ slime | 4+ slime | | Lactose | ‡ | 4+ elimy
sediment | 3+ with silky turbidity | 3+ slime | 4+ simy
sediment | 4+ black
sediment | 4+ slime | 4+ slime | 4+ slime | 4+ sediment | 4+ slime | 4+ slime | | Sucrose | ‡ | 4+ slimy
sediment | 3+ with silky
turbidity | 3+ sime | 4+ slimy
sediment | 4+ black
sediment | 4+ slime | 4+ slime | 4+ slime | 4+ sediment | 4+ slime | 4+ slime | | Glucose | ‡ | 4+ slimy
sediment | 4+ with silky
turbidity | 4+ slime | 4+ slimy
sediment | 4+ black
sediment | 4+ slime | 4+ slime | 4+ alime | 4+ slime | 4+ slime | 4+ slime | | Broth | heavy
turbidity with
slime
developing | , | heavy with
slime | | heavy with
slimy
sediment | | moderate
turbidity | - | moderate
turbidity | | clear slimy
sediment | | | Agar Shake | very fine colonies;
very anserobic | | diffuse colonies
very anaerobic | | diffuse growth;
heavy gas; very
anaerobic | | small colonies;
very anaerobic | | medium colonies,
very anaerobic | | medium colonies,
yery anserobic | , | | Morphology | slender gram positive rod
singly and in chains; distinct
rods uniformly spaced | | slender gram positive rod
in chains, with tadpole | | medium to small gram
negative elongate pointed
rods in pairs | | slender gram positive,
sometimes slightly curved
rod, singly | | short, medium slightly
curved gram positive rod,
singly; often developing
clusters | | gram positive medium rods,
tending to form clusters | some anguary curved | | Type
Culture | FA-1 | | FA-2 | | FA-3 | | · FA-4 | | FA-5 | | FA-6 | | Results obtained under NASA contract NASw-738, "Study of the Normal Fecal Bacterial Flora of Man." * Acid Reduced Curd 177 | | | | | | | | | | | 1 | | 7 | |-----------------|--|----------|---|----|--|--|---|----------------|---|---|---|---------------| | 뛾 | 6.6 | | 6.9 | | 7.0 | | .6.7 | | 5 | | 7.2 | | | Gelatin | no liquefaction | | no liquefaction | | no liquefaction | . | no liquefaction | | no liquefaction | : | no liquefaction | | | Litmus Milk | ARC* delayed
proteolysis | | partial reduction no liquefaction
orange color | | delayed ARC*
with ±
proteolysis | | delayed ARC*
with proteolysis | | ARC* with proteolysis | | delayed ARC*
with protectysis | | | Blank | +_ | + | + | 3+ | clear
with
slight
slime | + | +
sediment | 4+
sediment | ±
sediment | clear
with
slight
sediment | ± slime | ± slime | | Destrin | + | + sitme | + | 3+ | ± slime | + slight
slime | ÷ | 4+ sediment | 3+ | 3+ sediment | ± slime | + slime | | Lactose | 4+ slime | 4+ slime | + | 3+ | + slime | 3+ slime | 4+ fluffy
sediment | 4+ sediment | 3+ sediment | 3+ sediment | + with slime | 3+ slime | | Sucrose | 4+ slime | 4+ slime | + | 3+ | 3+ slight
slime | 3+ moderate
slime | 4+ fluffy
sediment | 4+ sediment | ÷ | 3+ sediment | 3+ slime | 3+ slime | | Glucope | 4+ slime | 4+ slime | + | 3+ | 3+ slight
slime | 3+ moderate
slime | 4+ fluffy
sediment | 4+ sodiment | ÷ | 3+ sediment | 3+ slime | 3+ slime | | Broth | moderate
turbidity
slime | | clear with
sediment | | moderate
turbidity | | heavy with
floccular
sediment | | heavy
turbidity | | heavy with
slime | | | Agar Shake | fine colonies;
very anaerobic | | fine colonies;
very anaerobic | | haze; very
anaerobic | | fine colonies,
very anserobic | | fine colonies,
very anaerobic | | medium colonies
very anserobic with | slight gas | | Morphology | small gram negative slender
rod, tendency towards
bipolar staining | | tiny gram negative slender
rods, slightly curved | | medium to large pleomorphic
gram positive rod in pairs
and short chains; chain has
characteristic hooked or | loop shape - older cultures
form heavy gram positive
aggregation | very small gram positive rods in chains with a tendency for bipolar staining sometimes slightly pointed | | medium short gram positive
rods, some slightly curved, | older cultures tend toward
gram positive aggregation | gram positive tiny pointed rods in chains with many | coccold forms | | Type
Culture | FA-7 | | FA-8 | | FA-9 | | FA-10 | | FA-11 | | FA-12 | | TABLE 19 --- Continued | Culture | B Morphology | Agar Shake | Broth | Glucope | Sucrose | Lactose | Destrin | Blank | Thems Wilk | Colotta | 7 | |---------|--|--|--|---|--|---|---|--|-----------------------------|----------------------------------|------------| | FA-13 | 3 small gram negative cocci
in masses | fine colonies;
heavy gas; very
anaerobic | moderate
turbidity | 3+ gas
black slime | 3+ gas
black slime | 3+ gas
black slime | 3+ gas
black slime | 3+ gas
black
time | Reduced | no liquefaction | 6.7 | | | 5 | | | 3+ black
slime | 3+ black
slime | 3+ black
slime | 3+ black
slime | 3+ black
slime | , a | | | | FA-14 | gram negative rods, long slender with gram positive areas | tiny colonies, very
anaerotic with
heavy gas | heavy turbidity gas | 4+ slight slime
gas | 4+ slight slime 4+ slight slime
gas | + | Ħ | ÷i | Reduced, whey carmelization | no liquefaction | 6.75 | | | | | | ‡ | ‡ ‡ | 3+ sediment | 3+ slime | 3+slime | , . | | | | FA-15 | short fat gram negative rod,
singly and in pairs; some
with pointed ends | delayed haze;
heavy gas; very
anaerobic | heavy with
slight slime | 4+ slight slime 4+ slight slime | 4+ slight slime
4+ slight slime | +
4+ black
slime | 2+ slight
slime
4+ slime | 41 41 | delayed ARC*
with whey | nq liquefaction
grey sediment | 6.7 | | FA-16 | 6 gram positive pleomorphic rods; some curved and some tadpole forms | hare with anaerobic heavy v | heavy with
slime | + curly slime
3+ slime | + curly slime
3+ slime | + curly slime
3+ slime | clear slime
+ slime | | ARC* | no liquefaction | . 80 | | FA-17 | large gram positive rod singly and in pairs forming palisades and V's | fine colonies very
anaerobic, slight
gas, occasionally | alight with finely granular sediment and side growth | clear with finely granu- lar sediment clear with finely granu- lar sediment | clear with
finely granu-
lar sediment
clear with
finely granu-
lar sediment | clear with finely granu- lar sediment clear with finely granu- lar sediment | clear with finely granu- lar sediment clear with finely granu- lar sediment | clear with
finely
granular
sediment
clear with
finely
granular
sediment | ARC* with | o liquefaction | 6.8 | | FA-18 | gram positive long slender
rods, irregular staining | fine colonies;
very anaerobic | slight with
slime | ± moderateslime± moderateslime | ± moderate
slime
± moderate
slime | ± moderate
slime
± moderate
slime | ± moderate
slime
± moderate
slime | * moder-
ate slime
* moder-
ate slime | ARC* delayed | no liquefaction | 6.3
6.6 | | | | , | | | | | | | | | | TABLE 19 --- Continued | Culture | Morphology | Agar Shake | Broth | Glucope | Sucrose | Lactose | Deatrin | Blank | Litmus Milk | Gelatin | 뛾 | |---------|---|---|--|--------------------------|--------------------------|--------------------------|--------------------------|--------------------|---|-----------------|-----------| | FN-1 | gram positive pointed rods in
pairs and short chains | fine colonies
facultative
anaerobic | heavy with
slime | 4+ slime | 4+ slime | 3+ slime | 3+ slime | 3+ slime | delayed ARC* | no liquefaction | 6.1 | | | | | | 4+ slime | 4+ slime | 4+ slime | 4+ slime | 4+ slime | | | | | FN-2 | gram positive coccobacillus
pairs and chains | medium colonies
facultative anserobic | clear with
growth on sides
and white
sediment | 3+ granular
sediment | 3+ granular
sediment | 3+ granular
sediment | + granular
sediment | # | ARC* with | no liquefaction | .5
3 | | | | | | 3+ gramlar
sediment | 3+ granular
sediment | 3+ granular
sediment | 3+ granular
sediment | + with
sediment | | | | | FN-3 | small round cocci in short
chains becoming less
discrete with age | discrete colonies
with heavy gas
facultative anse-
robic | moderate with
white sediment | 3+ gramlar
sediment | 3+
granular
sediment | 4+ sediment | * | # | ARC* with
proteolysis | no liquefaction | 6 | | | | | | 4+ granular
sediment | 4+ granular
sediment | 4+ gramiar
sediment | 3+ granular
sediment | #1 | | | | | FN-4 | gram positive elongate cocci
in short chains | fine colonies
facultative anae-
robic | moderate | 4+ slime | 4+ slime | 3+ slime | 3+ slime | 3+ slime | delayed soft | no liquefaction | 6.5 | | | | | | 4+ slime | 4+ slime | 4+ slime | 4+ slime | 4+ slime | | | | | FN-5 | gram positive diplococci in
pairs and short chains;
pleomorphic | fine colonies;
facultative anae-
robic | moderate with
floccular
sediment | 3+ floccular
sediment | 3+ floccular
sediment | 3+ floccular
sediment | 3+ floccular
sediment | sediment | ARC* with slight no liquefaction
proteolysis | no liquefaction | 8.7.7.7.7 | | | | | | 4+ floccular
sediment | 4+ floccular
sediment | 4+ floccular
sediment | 4+ floccular
sediment | +
sediment | | | | | | | | | | | | | | | | | TABLE 19 --- Continued | Hď | 6.7 | | 6.2
4.2 | | &
& | | æ.æ.
∞.4 | . • • | |-------------|---|---------------------------|-------------------------------------|--------------------------------|--|------------------------------------|---|--| | Gelatin | black bottom
no liquefaction | | no Mquefaction | | no liquefaction | | no Mquefaction | | | Litmus Milk | delayed ARC*
with proteolysis | | ARC* with
proteclysis | | reduced | • | delayed ARC*
with slight
proteolysis | | | Blank | 1+ with
slime | 4+ with
black
slime | 3+ with
floccular
slime | + slight
floccular
slime | 2+ with
slime | 3+ with | 3+ with
slime
and gas | 3+ with
slime
sometime
dark | | Dextrin | 2+ with slime 1+ with slime | 4+ with black
slime | 4+ with heavy
slime | 3+ with heavy
slime | 2+ with slime 2+ with slime | 3+ with sitme | 4+ with slime
and gas | 4+ with slime 3+ with sometimes sime dark dark | | Lactose | 4+ with slime | 4+ with black
slime | 4+ with heavy
slime | 3+ with heavy
slime | 2+ with slime | 3+ with slime | 4+ with slime
and gas | 4+ with slime
sometimes
dark | | Sucrose | 4+ with slime | 4+ with black
slime | 4+ with heavy
slime | 3+ with heavy
slime | 2+ with slime | 3+ with slime
sometimes
dark | 4+ with slime
and gas | 4+ with slime
sometimes
dark | | Glucope | 4+ with slime | 4+ with black
slime | 4+ with heavy
slime | 3+ with heavy
slime | 2+ with alime | 3+ with silme
sometimes
dark | 4+ with alime
and gas | 4+ with slime
sometimes
dark | | Broth | heavy
floccular
sedfment | | moderate with .
floccular slime | | moderate with
moderate black
sediment
sometimes | | moderate with
granular
sediment,
sometimes | | | Agar Shake | fine colonies,
heavy gas, very
anaerobic | : | small colonies,
very anaerobic | | tiny colonies,
very anaerobic | | tiny colonies heavy
gas, very
anserobic | | | Morphology | short gram negative rod in
pairs and chains, some
pointed | | gram negative short rod in
pairs | | gram negative pointed rods | | gram negative slender rods
in pairs some pleomorphic | | | Type | GD-1 | | GD-2 | | GD-3 | | 4 68 | | Results obtained under contract AF33(615)-1748, "Determination of Aerobic and Anserobic Microflors of Human Feces." TABLE 19 --- Continued | 뛶 | 6.6
GD-5a
6.2 | | 5.9 | | 6 .8 | | |-------------|---|--|--|-----------------------------------|--|------------------------------------| | Gelatin | no liquefaction | | no liquefaction | | no liquefaction
black bottom | | | Litmus Milk | ARC* with proteclysis | | delayed ARC*
with proteclysis | | reduced | | | Blank | 2+ with
granular
sediment | 3+ with
slime or
granular
sediment
sometime
black | + with
slimy
sediment | 3+ with
brown
slime | 3+ with
heavy
slime
and gas | 4+ with
heavy
black
slime | | Dextrin | 4+ with granular sediment or slime | 4+ with slime or granular sediment sometimes black | 3+ with
granular
sediment | 4+ with brown 3+ with slime slime | 3+ with heavy
slime and gas | 4+ with heavy
black slime | | Lactose | 4+ with granular sectiment or slime | 4+ with slime or granular sediment sometimes black | 3+ with
granular
sediment | 4+ with brown
slime | 4+ with slime
and heavy gas | 4+ with heavy
black slime | | Sucrose | 4+ with
granular
sediment
or slime | 4+ with sline or granular sediment sometimes black | 3+ with
granular
sediment | 4+ with brown
slime | 4+ with slime
and heavy gas | 4+ with beavy
black slime | | Glucope | 4+ with
granular
sediment
or slime | 4+ with slime or granular sediment sometimes black | 3+ with
granular
sediment | 4+ with brown
slime | 4+ with slime
and heavy gas | 4+ with heavy
black slime | | Broth | clear to
moderate with
balls of
sediment | | slight to
moderate with
slimy sediment | | 4+ with dark
slime | | | Agar Shake | small colonies,
very anaerobic | | tiny colonies,
heavy gas, very
anaerobic | | tiny colonies,
heavy gas, very
anserobic | | | Morphology | gram ± medium rods in
short chains | | gram negative short pleo-
morphic rods in pairs some
pointed | | gram ± short pleomorphic
rods in pairs some pointed | | | Type | GD-5
and
GD-5a | | GD-6 | | GD-7 | | TABLE 19 --- Continued | 푎 | <u> </u> | | 7. 25 | | 5.6 | | |-----------------|--|--|--|--|--|---------------------------| | Gelatin | no liquefaction
black bottom
and gas | · | no liquefaction | | no liquefaction | | | Liftmus Milk | reduced with
black bottom | · | ARC* with proteolysis and whey | | ARC* with
delayed
proteclysis | | | Blank | + with
dark
granular
sediment | + with
dark
granular
sediment
and side
growth | + with
silky
slime
and side
growth | + with
silky
silme
and side
growth | + with
slight
slime | + with
slight
slime | | Dextrin | + with dark
granular
sediment
and gas | + with dark
granular
aediment
and side
growth | + with slime
and side
growth | + with slime
and eide
growth | 4+ with heavy
slime | 4+ with heavy
slime | | Lactose | + with dark
granular
sodiment
and gas | + with dark
granular
groundinent
and side
growth | 3+ with slime
and side
growth | 3+ with slime
and side
growth | + with slime | + with slime | | Sucrose | + with dark
granular
sediment
and gas | + with dark
granular
sedument
and side
growth | 3+ with slime
and side
growth | 3+ with slime
and side
growth | 3+ with slime
and gas | 3+ with slime
and gas | | Glucope | + with dark
granular
sediment
and gas | + with dark
granular
scalinent
and side
growth | 3+ with slime
and side
growth | 3+ with slime
and side
growth | 4+ with slime
and gas | 4+ with slime
and gas | | Broth | moderate with
black granular
sediment
and gas | · | heavy with
granular
sediment | | heavy with
slight gas | | | Agar Shake | fine colonies with
gas, very
anaerobic | | small colonies
heavy gas, very
anserobic | | very fine colonies;
very anserotic | | | Morphology | tiny gram negative cocci
in clusters | | gram positive large pointed
rods in chains | | gram positive slender rods,
some in chains, some
slightly curved | | | Type
Culture | CT-1 | | CT-2 | | CT-3 | | Results obtained under Contract AF29(600)-4124, "Study of Bacterial Flora of Almentary Tract of Chimpanzees." TABLE 19 --- Concluded | Hď | œ
œ | | 7.3 | | | |-----------------|--|--|--|------------------------------|--| | Gelatin | no liquefaction | | no liquefaction | | | | Litmus Milk | ARC* | | reduction | | | | Blank | + with
slight
slime | + with
slight
slime | 1+ with
granular
slime | 1+ with
granular
slime | | | Dextrin | 3+ with flocculant granules and side growth | 3+ with
flocculant
granules and
side growth | 1+ with
granular
slime | 1+ with
granular
slime | | | Lactose | + with slight
slime | + with slight
slime | 1+ with
granular
slime | 1+ with
granular
slime | | | Sucrose | 3+ with
flocculant
granules and
side growth | 3+ with
flocculant
granules and
side growth | 1+ with
granular
slime | 1+ with
granular
slime | | | Glucope | 3+ with
flocculant
granules and
side growth | 3+ with
flocculant
gramies and
side growth | 1+ with
granular
slime | 1+ with
granular
slime | | | Broth | slight with
slime (dark?) | | slight with | | | | Agar Shake | very fine colonies
facultative
anaerobic | | small colonies
facultative
anaerotic | | | | Morphology | gram positive rods, some
slightly curved, some ovoid
in chains | | gram positive rods some in
pairs; various sizes | | | | Type
Culture | CN-1 | | CN-2 | | | TABLE 20.
LIPASE PRODUCTION | R | A | J | D | |---|---|---|---| | | | | | | CODE NO. | IDENTITY OF ORGANISM | LIPASE | PRODUCTION | | |----------|----------------------|---|------------|----| | A 3 | FA 18 | | + | | | A 10 | FA 13 | | - | | | A 12 | GD 4 | g • · | - | | | A 14 | CT 1 | | - Y* | | | A 19 | FN 3 | | - Y* | • | | A 28 | GD 2 | | + | | | A 59 | Unidentified | \$ ************************************ | ± : | | | A 79 | CN 1 | | + | | | A 150 | GD 6 | : | - Y* | | | A 236 | FA 3 | · · · · · · · · · · · · · · · · · · · | - | | | A 245 | FA 16 | | + | | | A 249 | Unidentified | | + | | | A 254 | FA 18 | ; | + | | | A 260 | FA 10 | | - | ř. | | A 261 | FA 6 | | + | | | A 283 | FA 11 | | - | | * Y = yellow color in growth column TABLE 21. EFFECT OF SELECTED FECAL ANAEROBES ISOLATED FROM THE CHIMPANZEES ON FATTY ACIDS* | Length of Inc | cubation at Reading | 6 - 7
Days | 6
Days | 6 - 7
Days | 6
Days | 3 - 4
Days | 3 - 4
Days | |---------------|-------------------------|-------------------|------------|---------------|----------------|---------------|----------------------| | Code Numbe | | GTPn | GTB | GTS | GTO | GMR | CA | | A 3 | FA 18 | + | ± | ± | - | - | - | | A 10 | FA 13 | - | - | - | - | - | - | | A 12 | GD 4 | - | - | - | - | - | - | | A 14 | CT 1 | - | Y sl. | L | sl. L | | - | | A 19 | FN 3 | 1 +
2 y | Y | L | L (sl.)
(Y) | - | - | | A 28 | GD 2 | ± | + | - | - | - | - | | A 59 | Unidentified | - | - | - | - | - | - | | A 79 | CN 1 | + | ± sl. | _ | - | - | - | | A 150 | GD 6 | L,Y | Y | L | L | - | - | | A 236 | FA 3 | | - | | - | - | - | | A 245 | FA 16 | | ± sl. | | _ | - | - | | A 249 | Unidentified | ± | - | - | 1 +
2 - | - | - | | A 254 | FA 18 | - | - | - | - | - | - | | A 260 | FA 10 | 1 ±
2 L, sl. Y | - | - | - | - | - | | A 261 | FA 6 | + | ± sl. | - | - | - | _ | | A 283 | FA 11 | - | 1 ±
2 - | - | - | - | *** | | | | | | * Tr | iplicate l | inoculati | lons | | GTPn | glyceryl triproprionate | | | | | | | | GTB | glyceryl tributyrate | | | | | | | | GTS | glyceryl tristearate | | + | positiv | 7 e | | | | GTO | glyceryl trioleate | | - | negati | ve or no | change | | | GMR | glyceryl monorincinolea | te | Y | - | (negativ | | | | CA | cholesterol acetate | | L | lighter | than un | inoculat | ed control (negative | | | | | sl. | slight | | | | #### APPENDIX I #### **TECHNIQUES** ### A. AEROBIC CULTURING TECHNIQUES #### 1. Primary Culturing Technique The primary aerobic culturing of the rectal samples was carried out at the 6571st Aeromedical Research Laboratory, Holloman Air Force Base, Alamogordo, New Mexico by spreading the differential media listed in Appendix II with 0.1 ml of the broth from tube 1 in the dilution series. The aerobic counting plates were made from the anaerobic broth dilution series so that comparisons could be made of the relative numbers of aerobic and anaerobic bacteria carried in the same sample. The fecal aerobic "count" was made by placing 1 ml broth of tube 3 of the anaerobic broth series into a Petri plate to which was added 10 ml of Gall's agar. The colonies were enumerated after 24 hours. Rogosa's agar was used as a pour plate and 1 ml from tube 1 was added to 1.0 ml of this agar. ## 2. Secondary Culturing Technique The agar plate cultures following incubation were sealed with a plastic sealer, refrigerated and returned to the Republic laboratories for further study. Selected colonies from each plate were picked into nutrient broth and all cultures showing growth were stained by the Hucker modification of the Gram stain and observed microscopically. The various morphological types of bacteria were separated into appropriate categories for identification by the following schema: #### a. Blood Agar - (1) Colonies - (a) Described - (b) Representative colonies planted in nutrient broth - (2) Broth - (a) Incubated - (b) Slides made for morphological identification - (3) Morphological Grouping - (a) Staphylococci and Micrococci - Mannitol salt agar - All positives confirmed with coagulase test - Phage typing on selected cultures - (b) Streptococci - Alpha hemolysis - Beta hemolysis - Gamma Hemolysis - Differential sugars - Typing - (c) Pneumococci - Pneumococcus broth bile solubility - (d) Haemophilus - Identified with typing antisera - (e) Neisseria - Sugar screen test - (f) Lactobacillus - Morphology on Rogosa's (Sampling period 1, 2 and 3) - Fermentation pattern (Sampling period 4) # (g) Gram Positive Rods - Loeffler's - Ziehl Neelsen - Sporulation - Gelatin - Sugar screen - Hydrolysis of starch - Detection of hyphae (Proactino or Nocardia) - Tellurite - Catalase - Hemolysis on sheep blood - CO₂ requirement # (h) Gram Negative Rods - TSI - Indol - Methyl red - Voges-Proskauer - Simmon's citrate - Urease - Nitrate - Motility - Gelatin - KCN - Phenylalanine - Cytochrome oxidase (on all alkaline over alkaline TSI's) - Typing antiseria (Shigella, Salmonella, E. coli, Klebsiella) # b. MacConkey's, BS, BG, SS (1) Treated as under (h) - c. Tetrathionate Broth - (1) Plated on MacConkey's, BS, BG, and SS - (2) Treated as under (h) - d. Mitis-Salivarius - (1) Colonies observed and described for identification of S. mitis, S. salivarius, and enterococci - e. Rogosa's S. L. Agar - (1) Colonies - (a) Morphological identification - (b) Slides made for morphological identification - (c) Fermentation pattern in sampling period 4 - f. Phytone Yeast Media - (1) Colonies - (a) Described - (b) Planted onto commeal agar - Growth observed for sporulation - g. PPLO - (1) Dienes' stained agar technique - h. Blood Agar Flask - (1) Blood broth (morphology) - (2) Darkfield when indicated - (3) Vincent's stain A Gram stain was made from the original swabs to observe the types of bacteria present in the original samples. The composition of the media used and the method of incubating and reading the various media is described in detail on the following pages. ## B. ANAEROBIC CULTURING TECHNIQUES The anaerobic culturing techniques to be described include the primary culturing and the screen tests. ## 1. Primary Culture The anaerobic broth series for the primary culture of the fecal swab was essentially the same as that used previously by Gall, et al⁽⁴⁵⁾ for culturing rumen anaerobes, and which has been recently successfully adapted in the Republic laboratories to the culture of human feces. (37) This is a technique that can be adapted easily to work under field conditions. Figure 1 gives a schematic representation of the primary culturing technique, which was modified to culture from a rectal swab. It was assumed that the rectal swab carried about 0.01 gm of fecal matter, which is comparable to the amount of fecal matter adhering to the standard loop. The rectal swab was placed directly into a tube containing 10 ml of Gall's broth prepared with two drops of cysteine and one drop of sodium bicarbonate. This tube was considered to represent roughly a 10⁻³ dilution to the rectal contents. Serial dilutions were made into 11 additional tubes with 10 ml of Gall's broth prepared as above by transferring 1 ml from the inoculated tube into the next tube, etc., the top 10 of which were labeled 1 to 10 and were incubated for five days or until growth occurred. Observations were made at 16 and 24 hours and daily thereafter. These ten tubes were considered to approximate a dilution of the sample from 10^{-4} to 10^{-13} . No dilution blanks were used, as each tube containing broth acts as a dilution blank for the next tube in the series. From tubes 5 and 6 pour plates were made into anaerobic Petri dishes using Gall's medium with cysteine and bicarbonate added. The top three tubes showing growth were subcultured into agar shakes using Gall's medium to observe the anaerobic or aerobic character of the growth and to preserve the cultures for purification and study. Each culture was stained by Hucker's modification of the Gram stain and the slide was observed microscopically. Cultures from the top three dilutions of feces showing two or more distinct morphological types of bacteria were Figure 1. Anaerobic Dilution Series Note: The anaerobic dilution series was modified in certain instances, but all calculations reflect this format. purified by plating and picking colonies using Gall's agar in an anerobic Petri dish. Selected colonies on the anaerobic Petri dishes originating from tubes 5 and 6 were picked and treated like the subcultures from the agar shakes as described above. Usually 4 to 6 different colony types appear on each anaerobic Petri plate adding 6 to 8 pure cultures to be run through the screen tests. During the fourth sampling period lower dilution anaerobes were treated as above. In addition blood plates were streaked from the anaerobic swabs from the rectum by the same technique as the aerobic plates, and were incubated in the same anaerobic jar as the anaerobic broth series. Growth was recorded after 24 hours and the plates were treated in the same manner as the aerobic blood plates. The compositions of the media and solutions used in this technique are listed below: #### a. Gall's Media 1% Peptone C (Albimi)⁽⁴⁶⁾ 1% Peptone S (Albimi)⁽⁴⁶⁾ 1% Beef Extract (Difco)⁽⁴⁷⁾ 1% Yeast Extract (Difco)⁽⁴⁷⁾ 0.1% K₂HPO₄ 0.1% KH, PO, 0.1% Glucose Make up to 100 ml with distilled water and tube in 9 ml amounts (pipetted for exactness of dilution) and sterilize exactly 10 minutes by autoclaving. Immediately before use, add aseptically 1 drop of sterile 10% NaHCO₃ and two drops of 10% cysteine-bicarbonate solution. This gives a pH of approximately 6.8 and an Eh of approximately -200 mv. Add 1.5% agar to the above when agar is needed for shakes and plates. This is done when originally making the media. In agar omit cysteine except where noted otherwise. To all broth and agar media 0.05% of bovine serum is added. b. 10% Cysteine-Bicarbonate Solution 20 gm Cysteine Hydrochloride 100 ml 1N NaOH 7% NaHCO₃ Add the
cysteine hydrochloride to the NaOH, giving an approximate pH of 7.0. More or less NaOH will be needed depending on the particular batch of cysteine hydrochloride. To 4 ml of this solution (15% as cysteine) in a test tube, add 2 ml of 7% NaHCO $_3$. Seal with melted vaspar. Autoclave at 15 lb for 10 minutes. ## 2. Physiological Studies The physiological studies of the pure cultures of predominating flora included the following screen tests: - a. Gram stain to observe morphology - b. Final pH in 0.1% glucose broth - c. Fermentation of the following sugars in Gall's media with glucose omitted: - (1) Glucose - (2) Sucrose - (3) Lactose - (4) Dextrin (sugars added at 0.1% level aseptically after autoclaving) - d. Growth in Gall's broth with no carbohydrate added - e. Liquefaction of gelatin in Gall's media minus carbohydrate - f. Growth and reaction in litmus milk (to which 0.05% bovine albumin and 0.1% of peptone have been added) - g. Growth in agar shake containing Gall's media All media contained bicarbonate and all media except the agar shake contained cysteine to produce an Eh of about -200 mv. The results of the screen test on each anaerobic culture were compared with a "key" setup with anaerobic cultures isolated in a NASA study on the predominating fecal flora of man⁽³⁷⁾ which appears in Table 18. When possible the cultures isolated from the chimpanzee were assigned a designation (FA or FN) from the human "key". Otherwise the culture was tabulated as "unkeyed". In the event that several of these "unkeyed" cultures were alike, a new designation (CT or CN) was setup which is described also in Table 18. # APPENDIX II # MEDIA COMPOSITION # **BLOOD AGAR PLATE** | Purpose: | Cultivate fastidious microorganis | ms | |------------|---|---------------| | Formula: | Base | Gms/Liter | | | Infusion from beef heart | 10.0 | | | Peptone "M" | 10.0 | | | Sodium chloride | 5.0 | | | Agar | 15.0 | | | pH 6.9 | | | | Then add: | | | | 5% defibrinated sheep blood | | | Technique: | Streak the plate with the original subculture from broth. | specimen or a | | Procedure: | Incubate 37°C for 18-24 hours | | | Reaction: | Colonies of bacteria usually grow
hemolytic types exhibit clear dist | | | Reference: | Difco Manual, (47) p. 88. | -
- | # MITIS SALIVARIUS AGAR Reference: | Purpose: | The detection of fecal streptococci. 24 hours at 37°C. | Incubate exactly | | | | |------------|--|------------------|--|--|--| | Formula: | Base | Gms/Liter | | | | | | Peptone "M" | 20.0 | | | | | | Dextrose | 1.0 | | | | | | Sucrose | 50.0 | | | | | | Di Potassium Phosphate | 4.0 | | | | | | Agar | 15.0 | | | | | | Trypan Blue | 0.075 | | | | | | Crystal Violet | 0.0008 | | | | | | pH 7.0 | | | | | | Technique: | Streak the plate with the inoculum. | | | | | | Reaction: | Streptococcus mitis: small or minute colonies Streptococcus salivarius: blue (smooth or rough), gum drop colonies 1-5 mm Enterococcus: dark blue or black raised colonies Coliform: brown colonies Pleuro-pneumonia: colorless mucoid colonies | | | | | Albimi Laboratories (46) # ROGOSA'S S. L. AGAR | Purpose: | SL Agar is a selective medium for oral and fecal lactobacilli | r the cultivation of | | | | | |------------|---|-----------------------|--|--|--|--| | Formula: | Base | Gms/Liter | | | | | | | Peptone "C" | 10.0 | | | | | | | Yeast extract | 5.0 | | | | | | | Monopotassium phosphate | 6.0 | | | | | | | Ammonium citrate | 2.0 | | | | | | | *Salt solution | 5.0 ml | | | | | | | Dextrose | 20.0 | | | | | | | Sorhitan Mono-oleate | 1.0 | | | | | | | Sodium Acetate Hydrate | 25.0 | | | | | | | Agar | 15.0 | | | | | | | Acetic acid | 1,32 | | | | | | | pH 5.4 | | | | | | | | *Salt Solution: | | | | | | | | Magnesium sulfate 7H ₂ O | 11.5 gms | | | | | | | Magnesium sulfate $2H_2^2O$ | 2.4 gms | | | | | | | Magnesium sulfate $4H_2^2O$ | 2.8 gms | | | | | | | Ferrous sulfate 7H ₂ O ² | 0.68 gms | | | | | | | Distilled water | 1000.0 ml | | | | | | Technique: | Melt agar then cool in water bath of broth culture to agar; then make | | | | | | | Procedure: | Incubate under partial anaerobic | conditions. | | | | | | Reaction: | Selective for cultivation of lactob | acilli | | | | | | Reference: | Difco Supplementary Literature, (| ⁴⁴) p. 59 | | | | | # PHYTONE YEAST (BBL) | Purpose: | For the isolation of dermatophytes especially T. nerrucosa from human and animal specimens. | | | | | | |------------|---|-----------------------|--|--|--|--| | Formula: | Base | Gms | | | | | | | Phytone | 10 | | | | | | | Yeast Extract | 5 | | | | | | | Dextrose | 40 | | | | | | | Streptomycin | . 03 | | | | | | | *Chloramphenicol | . 05 | | | | | | | Agar (dried) | 17 | | | | | | | *Chloromycetin TM Parke Davi | is & Co. | | | | | | Technique: | Streak slant directly with heav
suspension or other suspiciou | | | | | | | Reaction: | Typical colonies of the derma on phytone yeast agar. | tophytes grow rapidly | | | | | | Reference: | Baltimore Biological Laborate | ories ⁽⁴⁸⁾ | | | | | # MAC CONKEY'S AGAR | Purpose: | Primary differential plating media for coliforms. | | | |------------|---|---|--| | Formula: | Base | Gms/Liter | | | | Peptone "M" | 10.0 | | | | Lactose | 10.0 | | | | Bile salts | 1.5 | | | | NaCl | 5.0 | | | | Agar | 15.0 | | | | Neutral Red | 0.025 | | | | pl | H 7.1 | | | Technique: | With an inoculating loop, so original specimen or subcu | treak the plate with the
lture from a broth culture. | | | Procedure: | Incubate plate at 35-37°C for incubation may lead to conf | or 16-18 hours. Prolonged iusion of results. | | | Reaction: | color and may be surround
bile. This reaction is due
produced by fermentation of
and the subsequent absorpt
paratyphoid and dysentery | of lactose, upon the bile salts
ion of neutral red. Typhoid,
bacilli do not ferment lactos
e appearance of the medium. | | Difco Manual, (47) p. 131-132. Reference: ### SALMONELLA AND SHIGELLA AGAR | Purpose: | This | 3 8 | elective | m | edium | is | recom | ner | ıded | for | the | isola | itic | n | | |----------|------|-----|----------|---|-------|----|-------|-----|------|-----|-----|-------|------|---|--| | | | | | | - | | _ | _ | | - | | | | | | of shigella and salmonella from stools and other materials suspected of containing these organisms. | Formula: | Base | Gms/Liter | |----------|--------------------|--------------| | | Peptone "M" | 5.0 | | | Beef extract | 5.0 | | | Lactose | 10.0 | | | Bile salts | 8.5 | | | Sodium citrate | 8 . 5 | | | Sodium thiosulfate | 8.5 | | | Ferric citrate | 1.0 | | | Agar | 13.5 | | | Neutral red | 0.025 | | | Brilliant green | 0.33 | pH 7.0 Technique: With an inoculating loop, streak the plate with the original specimen or subculture from a broth culture. Procedure: Incubate plates at 35-37°C for a full 24 hours. Reaction: Shigella, salmonella and other organisms not fermenting lactose form opaque, transparent or translucent uncolored colonies, which generally are smooth. Reference: Difco Manual, (47) p. 135. # TETRATHIONATE BROTH | Purpose: | This selective enrichment medium is employed in the isolation of members of the Salmonella group. | | | | |------------|--|--|--|--| | Formula: | Base | Gms/Liter | | | | | Proteus Peptone
Bile salts | 5
1 | | | | | Calcium carbonate | 10 | | | | | Sodium Thiosulfate | 30 | | | | Technique: | Inoculate the broth by addint 1-specimen. Mix the broth with a suspend the particulate matter. | a glass rod or pipette to | | | | Procedure: | Incubate at 37°C for 12-24 hours | 8 | | | | Reaction: | Tetrathionate broth inhibits or and permits typhoid and the par unrestrictedly. If growth is predifferential and selective solid tion. | estyphoids to grow almost esent, subculture to | | | | Reference: | Difco Manual, (47) p. 157. | | | | ## TRIPLE SUGAR IRON (TSI) | Purpose: P | reliminary screening | of | gram | rods | |------------|----------------------|----|------|------| |------------|----------------------|----|------|------| | Formula: | Base | Gms/Liter | |----------|-----------------------|-----------| | | Peptone "M" | 20.0 | | | Lactose | 10.0 | | | Saccharose | 10.0 | | | Dextrose | 1.0 | | | Sodium Chloride | 5,0 | | | Iron Ammonium Citrate | 0.5 | | | Sodium Thiosulfate | 0.5 | | | Agar | 15.0 | | | Phenol Red | 0.025 | ## pH 7.3± | Technique: | Using needle with inoculum, go into butt first, | then | |------------|---|------| | | gig man on alandbiletill des to 11 c | | zig zag on slant while withdrawing needle from butt. Incubate 20-24 hours. Acid butt (yellow), alkaline slant (red) - Glucose fermented Reaction: acid throughout medium, butt and slant yellow - lactose or sucrose or both fermented. Blackening of the butt -hydrogen sulfide produced. Alkaline slant and butt (medium entirely red) - none of the three sugars fermented. Albimi Laboratories (46) Reference: #### BISMUTH SULFITE AGAR Purpose: Bacto-Bismuth Sulfite Agar is a highly selective medium designed especially for the isolation of salmonella typhosa from feces, urine,
sewage and other materials harboring this organism. | Formula: | Base | Gms | |----------|---------------------------|------| | | Bacto-Beef Extract | 5 | | | Bacto Peptone | 10 | | | Bacto Dextrose | 5 | | | Disodium Phosphate | 4 | | | Ferrous Sulfate | 3 | | | Bismuth Sulfite Indicator | 8 | | | Bacto Agar | 20 | | | Bacto-Brilliant Green | .025 | Technique: Streak or smear the surface of a plate with a heavy inoculum of the fecal material in such a way that on some portion of the plate the inoculum will be light, permitting the development of discrete colonies. Reaction: The typical discrete surface typhoid colony is black and is surrounded by a black or brownish-black zone which may be several times the size of the colony. By reflected light, preferably daylight, the zone exhibits a distinctly characteristic metallic sheen. Reference: Difco Manual, (47) p. 139. #### BRILLIANT GREEN AGAR | Pu | rpo | se: | |----|-----|-----| | | | ~~. | Brilliant green agar is a highly selective medium recommended for the isolation of salmonella, other than typhosa, directly from stools or other materials suspected of containing these organisms or after preliminary enrichment in tetrathionate broth. | Formula: | Base | Gms | |----------|------------------------------|-------| | | Bacto Yeast Extract | 3 | | | Proteus Peptone No. 3, Difco | 10 | | | Sodium Chloride | 5 | | | Bacto Lactose | 10 | | | Saccharose, Difco | 10 | | | Bacto Phenol Red | .08 | | | Bacto Brilliant Green | .0125 | | | Bacto Agar | 20 | #### Technique: Inoculate the surface of the plate with heavy suspensions of stools or other materials suspected of containing salmonella. ## Reaction: Typical salmonella colonies appear as slightly pink-white opaque colonies surrounded by a brilliant red medium. The few lactose or sucrose fermenting organisms which may develop on the medium are readily differentiated due to the formation of a yellow-green colony surrounded by an intense yellow-green zone. Reference: Difco Manual. (47) p. 145. ### INDOL BROTH Purpose: Part of IMVIC schema for identifying Enterobacteriaceae Formula: Base Bacto peptone Sodium chloride Distilled water 20 gms 5 gms 1000 ml Sterilize at 121°C 15 minutes. Add 10 cc/tube Technique: Inoculate broth and incubate for 48 hours at 37°C Test Reagent: Kovac's Pure amyl of isoamyl alcohol Paradimethylaminobenzaldehyde Concentrated pure hydrochloric acid 150 ml 10 gms 50 ml Dissolve aldehyde in alcohol and then slowly add acid. The dry aldehyde should be light in color. Kovac's reagent should be prepared in small quantities and stored in the refrigerator when not in use. Procedure: Add about 0.5 ml of reagent, shake tube gently. A deep red color develops in the presence of indol. Reaction: The red color indicates production of indol from the amino acid. Reference: Edwards & Ewing, (49)p. 248. # METHYL RED-VOGES PROSKAUER BROTH (MRVP) Purpose: Part of IMVIC schema for identifying Enterobacteriaceae Formula: Buffered peptone (Peptone M) 7 gms Glucose 5 gms Dipotassium phosphate 5 gms Distilled water 1000 ml Final pH 6.9 - adjust with HCl to 7.1 or 7.2 before autoclaving. Technique: MR: Inoculate 5 cc of broth and incubate at 37°C for 5 days. VP: Inoculate 5 cc of broth and incubate at 37°C for 2 days. Test Reagent: MR: Methyl red 0.1 gm Ethyl alcohol (95 to 96%) 300 ml *Water - Q.S. to 500 ml * Dissolve dye in the alcohol and add sufficient distilled water to make 500 ml. VP: O'Meara (modified) Potassium hydroxide 40 gms Creatine hydrate 0.34 gm Distilled water 100 ml Procedure: MR: Use 5 or 6 drops of reagent per 5 ml of culture. Reactions are read immediately. Positive tests are bright red. Weakly positive tests are red-orange. Negative tests are yellow. VP: Use reagent in proportion of 1 ml to 1 ml culture. Test may be placed at 37°C or left at room temperature. In either case, final readings after 4 hours. Tests should be aerated by shaking tubes. A positive test turns red. Reaction: MR: A positive reaction is indicated by a distinct red color showing the presence of acid. A negative reaction is indicated by a yellow color. A positive test is indicated by the color showing that the organism produces acetylmethylcarbinol. Edwards & Ewing, (49) pgs. 249 and 256. Reference: ## **UREASE BROTH** | Purpose: | Rough grouping of Enterobacteriaceae into proteus, klebsiella, aerobacter or providence group. | | |----------|--|-----------------------------------| | Formula: | Base | Gms/Liter | | | Urea
Monopotassium Phosphate
Disodium Phosphate
Yeast Extract
Phenol Red | 20.0
9.1
9.5
0.1
0.01 | | | nH 6 8 + | | pH $6.8 \pm$ Technique: A heavy inoculum is emulsified in the broth. Incubate 24 hours. Read at 2, 4, and 24 hour intervals. Urease activity is observed by a change of color in the indicator - from salmon to pink - due to the production of ammonia. Reference: Albimi Laboratories (46) Reaction: # MOTILITY TEST MEDIUM | Purpose: | Part of IMVIC schema for identifying | Enterobacteriaceae | |------------|---|-----------------------------------| | Formula: | Beef extract Peptone Sodium Chloride Agar | 3 gms
10 gms
5 gms
4 gms | | Technique: | The medium is inoculated by stabbing of the medium about 1/3 of the length incubated at 37°C for a total of 48 hou and 48 hour intervals. | of the media and | | Reaction: | Motility is manifested macroscopically by a diffuse zone of growth spreading from the line of inoculation. Certain species of motile bacteria will show diffuse growth throughout the entire medium, while others may show diffusion from one or two points only, appearing as modular outgrowths along the stab. | | | Reference: | Edwards & Ewing, (49) p. 249. | | # PHENYLALANINE | Purpose: | Part of IMVIC schema for identifying Enterobacteriace | | | |---------------|--|---------|--| | Formula: | Base | Gms | | | | Yeast extract | 3 | | | | DL-phenylalanine | 2 | | | | (or L-phenylalanine) | (1) | | | | Disodium phosphate | 1 | | | • | NaCl | 5 | | | | Agar | 12 | | | * | Distilled water | 1000 ml | | | | Tube and sterilize at 121°C for 10 minutes. | | | | Technique: | Inoculate broth and incubate 24 hours at 37°C. | | | | Test Reagent: | 10% Ferric Chloride | | | | Procedure: | 4 or 5 drops of ferric chloride reagent are allowed to run over growth on slant. If phenylpyravic acid has been formed a green color develops in the syneresis fluid in the slant. | | | | Reaction: | The medium is used to test for the phenylalanine to phenylpyruvic ac | | | | Reference: | Edwards & Ewing (49) p. 252. | | | # SIMMONS CITRATE AGAR SLANT | Purpose: | Purpose: Part of IMVIC schema for differentiation of lactose-
fermenting Enterobacteriaceae | | | | |------------|---|-----------------|--|--| | Formula: | Base | Gms/Liter | | | | | Sodium Citrate | 2.0 | | | | | Sodium Chloride | 5.0 | | | | | Ammonium Dihydrogen Phosphate | 1.0 | | | | | Dipotassium Phosphate | 1.0 | | | | | Magnesium Sulfate | 0.2 | | | | | Agar | 15.0 | | | | | Brom-Thymol Blue | 0.08 | | | | | pH 6.8 ± | | | | | Technique: | Using a loop, inoculate lightly, incuba 48 hours and read. | te at 37°C for | | | | Reaction: | A positive test is indicated by the deve
Prussian blue color in the medium, sl
organism can utilize citrate as a sole | nowing that the | | | Albimi Laboratories (46) Reference: ## OXIDASE TEST FOR PSEUDOMONAS Purpose: This rapid test allows for a convenient differentiation between pseudomonas and other gram-negative, lactosenegative colonies. ### Formula: ### Reagent | A. | Ethylalcohol 95-96%
Alphanaphthol | 100 ml
1 gm | |----|---|----------------| | В. | Distilled water Para-aminodimethylaniline HCl | 100 ml | (Reagent B should be prepared frequently and should be stored in refrigerator when not in use.) ## Technique: Nutrient agar slant cultures incubated at 37°C, or at a lower temperature if required are recommended. After incubation two or three drops of each reagent are introduced and the tube tilted so that the reagents are mixed and flow over the growth on the slant. ### Reaction: Positive reactions are indicated by the development of a blue color in the growth within two minutes. The majority of positive cultures produce strong reactions within 30 seconds. Any very weak or doubtful reaction that occurs after two minutes should be ignored. Plate cultures may be tested by allowing an equal parts mixture of the reagents to flow over isolated colonies. Reference: Bailey and Scott, (50) p. 160; Edwards & Ewing, (49) p. 251-2. # NITRATE BROTH | Purpose: | Part | of IMVIC schema for identify | ying Enterobacteriaceae | |---------------|----------------------|--|-------------------------| | Formula: | Base | • | Gms | | | Pept
Pota
Dist | t Extract
one
ssium Nitrate
illed Water
in 5 cc/tube | 3
5
1
1000 ml | | Technique: | Inoc | ulate broth and incubate 48 ho | ours at 37°C. | | Test Reagent: | A. | Dissolve 8 gms sulfanilic a acetic acid. | cid in 1000 ml 5 N | | | В. | Dissolve 5 gms alphanaphty of 5 N acetic acid. | ylamine in 1000 ml | | Procedure: | mix
A po | nediately before use, equal paged and 0.1 ml of
mixture is a ositive test for reduction of nuclion in few minutes. | idded to each culture. | | Reaction: | - | red color indicates the reductites. | ction of nitrates to | | Reference: | Edw | vards & Ewing ⁽⁴⁹⁾ p. 250. | • | ### BACTO-KCN BROTH BASE | Purpose | 3: | |---------|----| | | | KCN broth base is recommended for the differentiation of Enterobacteriaceae, particularly to separate the salmonellae from the Bethesda-Ballerup group and to distinguish the klebsiella from Escherichia coli. Maeller showed that media containing potassium cyanide permitted differential growth of Enterobacteriaceae. E. coli, salmonella and shigella were inhibited in the medium while members of the klebsiella, Bethesda-Ballerup and Proteus groups grew unrestrictedly. E. freundii also grew in the medium. | Formula: | Base | Gms | |------------|---|---------------------| | | Proteose Peptone No. 3 Difco | 3 | | • 15 | Disodium Phosphate | 5.64 | | | Monopotassium Phosphate | . 225 | | , | Sodium Chloride | 5 | | | KCN (add 15 cc of .5%) | 15 cc | | | | h 1 4- 0 1 | | Technique: | The tubes are inoculated heavily wit a 24 hour broth culture of the test of | | | | a 24 hour brown curtaire of the test of | rgamama. | | Reaction: | Observations for growth are made a | t the end of 24 and | Reference: Difco Supplementary Literature (44) p. 122. # MANNITOL SALT AGAR | Purpose: | Isolation and | l identification | of | Staphylococci | |----------|---------------|------------------|----|---------------| | Fulpose. | Thouamon and | | | | | Formula: | Base | Gms/Liter | |----------|-----------------|--------------| | | Peptone "M" | 10.0 | | | Beef Extract | 1.0 | | | Sodium Chloride | 75. 0 | | | d-Mannitol | 10.0 | | | Agar | 15.0 | | | Phenol Red | 0.025 | ## pH 7.4 | Streak the media with heavy inoculum of original | |--| |
material or with an inoculating loop streak from a | secondary broth culture. Reaction: Staphylococci are not inhibited by a concentration of 7.5 per cent sodium chloride. Pathogenic staphylococci produce colonies with yellow zones while nonpathogenic staphylococci produce small colonies surrounded by red or purple zones. Reference: Albimi Laboratories (46) ### LOEFFLER BLOOD SERUM AGAR Purpose: Loeffler Blood Serum is employed in the cultural diagnosis of diphtheria. The growth of diphtheria bacilli are stimulated and other throat organisms are inhibited by this media. Formula: Base Gms/Liter Beef serum 70 Dextrose broth infusion 2.5 Whole egg 7.5 Technique: Inoculate slant with original swab obtained from throat or subculture from broth with aid of inoculating loop. Incubate at 37°C for 18-24 hours. Reaction: On Loeffler Blood Serum C. diphtheria grow luxuriantly and rapidly, developing morphologically typical organisms, in 12-16 hours. Reference: Albimi Laboratories (46) ## GLYCEROL AGAR Purpose: Glycerol agar is a non-selective agar medium often used for cultivating tubercle bacilli. | Formula: | Base | Gms | | |----------|---------------------|-----|--| | | Beef Heart Infusion | 500 | | | | Bacto Tryptone | 10 | | | | Sodium Chloride | 5 | | | | Bacto Agar | 15 | | | | Glycerol | 5% | | Technique: Inoculate the glycerol agar slant directly with the fecal suspension or other material suspected of containing the tubercle bacilli. Reaction: Typical colonies of the tubercle bacilli are formed. Reference: Difco Supplementary Literature (44) p. 225. # GALL'S GELATIN (i. e. 12%) Purpose: The use of gelatin in culture media for studies of gelatinolysis (elaboration of gelatinolytic enzymes) by bacteria. | Formula: | Base | ` Gms | |----------|-------------------------------|-------| | | Bacto tryptone | 10 | | | Bacto peptone | 10 | | | Bacto yeast extract | 10 | | | Bacto beef extract | 10 | | | Monobasic potassium-phosphate | 1 | | | Dibasic potassium phosphate | 1 | | | Serum | 1 cc | | | Gelatin | 120 | ### LITMUS MILK Purpose: Litmus milk is recommended for propagating and carrying stock cultures of the lactic acid bacteria and also for determining the action of bacteria, upon milk. Formula: Base Gms Bacto Skim milk 100 Bacto Litmus .75 Technique: Inoculate litmus milk from a suspension of the test organism or directly from an isolated colony. Reaction: Litmus milk may be employed as a differential medium for bacteria on the basis of lactose fermentation, caseolysis, and casein coagulating properties. Litmus has the advantage of being readily reduced by certain bacteria. This reduction of the litmus is useful as a differential aid. Reference: Difco Manual (47)p. 192. ### CORN MEAL AGAR Purpose: Corn meal agar is recommended for the production of chlamydospores by Candida albicans and for the cultivation of phytopathological and other fungi. Formula: Base Gms Corn Meal, Infusion from 50 Bacto Agar 15 Technique: Streak surface of the corn meal plate directly with suspicious material or with a culture that grew on preliminary solution medium. Reaction: Typical chlamydospores are produced by Candida albicans. Reference: Difco Manual⁽⁴⁷⁾ p. 246. #### REFERENCES - 1. AF29(600)-4124, "Study of Bacterial Flora of the Alimentary Tract of Chimpanzees," Holloman Air Force Base, Alamogordo, New Mexico, RAC 1094-5FR. - 2. AF29(600)-4555, "The Influence of Diet on the Normal Fecal Flora of the Chimpanzee," RAC 1787-5FR, by L. S. Gall. - 3. Dietrich, W. H. "The Physical Examination of Rhesus Monkeys," J. Amer. Vet. Med. Assoc., 127, 137-141, 1953. - 4. Hardy, A. V., "Problems in the Control of Infectious Diseases in a Large Colony of Primates," Proc.Anim. Care Panel, 5, 16-21, 1954. - 5. Schneider, N.J., Prather, E.C., Scaterday, J.E., Lewis, A.L. and Hardy, A.V., "Enteric Bacteriological Studies in a Large Colony of Primates." In Manuscript. - 6. Dack, G.M. and Petran, Elizabth, "Experimental Dysentery Produced by Introducing Bacterium Dysenteriae (Flexner) into Isolated Segments of the Colon of Monkeys," J. infect. Dis., 55, 1-6, 1934. - 7. Rewell, R.E. and Bridges, R.F., "An Outbreak of Shigella Flexneri Infection Among Rhesus Monkeys," Mon. Bull. Minist. Hlth Lab. Serv., 7, 25-29, 1948. - 8. Cruickshank, J. C. and Brady, R. S., "Bacillary Dysentery in Laboratory Monkeys," Vol. II. An Outbreak in Monkeys Due to Shigella Flexneri 103Z. Mon. Bull. Minist. Hlth Lab. Serv., 9, 278-279, 1950. - 9. Galton, Mildred M., Mitchell, R.B., Clark, G., & Riesen, A.H., "Enteric Infections in Chimpanzees and Spider Monkeys with Special Reference to a Sulfadiazine Resistant Shigella," J. infect. Dis., 83, 147-154, 1948. - 10. Cook, R., "The Naturally Occurring Diseases of Laboratory Animals and Practical Measures for the Control of these Diseases." J. Med. Lab. Technol., 11, 30-35, 1953. - 11. Barnes, L.A., Durant, R.C. and Mackey, W.H., "Laboratory Studies of Monkeys with and without Shigella Infection," Res. Rep. Naval Med. Res. Inst., 13, 467-480, 1955. - 12. Lapin, B.A. and Yakovleva, L.A., "Comparative Pathology in Monkeys," Institute of Experimental Pathology and Therapy, Academy of Medical Sciences, USSR, Sukhumi, Georgia, Russia, Charles C. Thomas, Publisher, Springfield, Illinois, 1963. - 13. Baumann, F.B., "A Note of the Spontaneous Occurrence of Bacillary Dysentery in Monkey," Philippine J. Sci., 5, 481, 1910. - 14. Stadie, R., "Etwas uber Erkrankungen von Affen," Zool. Garten, 3, 1930. - 15. Fairbrother, R. W. and Hurst, E. W., "Spontaneous Diseases Observed in 600 Monkeys," J. Pathol. Bacteriol., 35, N. 6, 2, 1932. - 16. Preston, W.S. and Clark, F.F., "Bacillary Disentery in Rhesus Monkey, J. Infectious Diseases, 63, 238, 1938. - 17. Johnsoni, I., "Uber Ruhrerkrankungen bei Menschenaffen," Zentr. Bakteriol. Parasitenk, I.S., 144, 1939. - 18. Hamerton, A. E., "Report on the Deaths Occurring in the Society's Gardens during the year 1940," Proc. Zool. Soc., London, III, III, 1941. - 19. Rewell, R. E., "Report of the Pathologist for the Year 1947," Proc. Zool. Soc., London, II, 1948. - 20. Hill, O., "Report of the Society's Prosector for the Year 1950," Proc. Zool. Soc., London, III, 1951. - 21. Hill, O., "Report of the Society's Prosector for the Year 1951," Proc. Zool. Soc., London, II, 1952. - 22. Hill, O., "Report of the Society's Prosector for the year 1955 and 1956," Proc. Zool. Soc., London, III, 1957. - 23. Abramova, Ye. V., "Spontaneous Dysentery in Monkeys," Works of the Sukhumi Biological Station AMS USSR, 244, 1949. - 24. Rosenbaum, G.I., "Phytoncide Therapy of Acute Dysentery," Dissertation, Moscow, 1953. - 25. Dzhikidze, E. K., "Dysentery Carriers Among Monkeys," Dissertation, Sukhumi, 1954. - 26. Dzhikidze, E.K. (Shigella dysenteriae carriage in monkeys), Zh. Mikrobiol., Moscow, 27 (10), 44-48, 1956. - 27. Ruch, Theodore, C. (Ph.D), "Diseases of Laboratory Primates," pg. 93 W.B. Saunders Company, Philadelphia, 1959. - 28. Bach, F.W. Fulscher, J. and Harnack, "Uber eine durch Affen verursachte Ruhrepidemie," Veroff, Med. Verw., 34, 61-73, 1931. - 29. Snijders, 1939. (quoted by J. Jansen, "Dysenterie (Bat. Flexneri) by Apen," Tijdschr-Diergeneesk, 66, 1304-1311, 1939. - 30. Carpenter, K. Patricia & Sandiford, B.R., "Epidemiology of a Human Case of Bacillary Dysentery due to Infection by Shigella Flexneri 103Z," Brit. Med. J., 1, 142-143, 1952. - 31. Habermann, R.T. and Williams, F.P., Jr., "Diseases Seen at Necropsy of 708 Macaca Mulatta (Rhesus Monkey) and Macaca Philippinesis (Cynomolgus Monkey)," Amer. J. Vet. Res., 18, 419-426, 1957. - 32. Garner, Anna C. and Morales C., "Occurrence of Salmonella and Shigella Organisms in Monkeys Transported from India to Randolph Air Force Base," USAD School of Aviation Medicine Rep. No. 56-140, 4pp, 1956. - 33. Sányál Ram Bramha, "A Handbook of the Management of Animals in Captivity in Lower Bengal, Calcutta," Bengal Secretariat Press, 1892 XLIX, 331 pp. - 34. Frances, John, "Tuberculosis in Animals and Man. A Study in Comparative Pathology,"
London, Cassel o Co. XVI, 357 1958. - 35. Schroeder, C.R., "A Diagnostic Test for the Recognition of Tuberculosis in Primates: A Preliminary Report," Zoologica N.Y., 23, 397-400, 1938b - 36. Rosebury, T., "Microorganisms Indigenous to Man," McGraw Hill Book Co., New York, 1962. - 37. NASW 738, "Study of the Predominately Normal Fecal Flora of Man," July 1956, by L. Gall. - 38. AMRL-T.R.-64-107, "Determination of Aerobic and Anaerobic Microflora of Human Feces," Aerospace Med. Research Lab., Wright-Patterson Air Force Base, Ohio, Oct. 1964. L 39. AF33(615)-1814, "The Biomedical Criteria for Personal Hygiene" in progress at AMRL, Wright-Patterson Air Force Base and RAD of Fairchild Hiller Corporation. - 40. Vincent, J.G., R.C. Veomett, and R.F. Riely, J. Bact., 78, 447, 1959. - 41. Edwards, P.R., M.A. Fife, and W. H. Ewing. Public Health Lab., 19, 85, 1961. - 42. Breed, Robert S., E.G.D. Murray, and Nathan R. Smute, "Bergey's Manual of Determinative Bacteriology," 7th Edition, The Williams and Wilkins Company, Baltimore, 1957. - 43. The Bacteria edited by J.C. Gunsalus and Roger Y. Stanier, Volume II, Academic Press, New York, 1961. - 44. Difco Laboratories, Difco Supplementary Literature, Detroit, Michigan, 1962. - 45. Gall, L.S., and W.M. Helvey, "Culture of Anaerobic Fecal Flora in Men Under Simulated Space Conditions," Bact. Proceedings, 1963. - 46. Albimi Laboratories, Inc., 35-22 Linden Place, Flushing, New York, 1964. - 47. Difco Laboratories, "Manual of Dehydrated Culture Media and Reagents for Microbiological and Clinical Laboratory Procedures," 9th Edition, Detroit 1, Michigan, 1963. - 48. Baltimore Biological Laboratory, 2201 Aisqueth Street, Baltimore 18, Maryland. - 49. Edwards, P.R. and W.H. Ewing, 'Identification of Enterobacteriaceae," 2nd Edition, Burges Publishing Company, Minneapolis, Minnesota, 1962. - 50. Bailey, W. Robert and Elvyn G. Scott, <u>Diagnostic Microbiology</u>, published by C.V. Mosby Company, St. Louis, Missouri, 1962. - 51. NAS9-4172, "Effect of Diet and Atmosphere on Intestinal and Skin Flora," by L. S. Gall, 1965. | Unclassified | | | | | | |---|--|---|---|--|--| | Security Classification | | _ | | | | | DOCUMENT CO
(Security classification of title, body of abstract and indexis | NTROL DATA - R& | D | | | | | 1. ORIGINATING ACTIVITY (Corporate author) | ng annotation must be en | | the overall report is classified) RT SECURITY C LASSIFICATION | | | | Republic Aviation Division | | 1 | lassified | | | | (Fairchild Hiller Corporation) | | 2 b. GROUP | | | | | (- d | | | | | | | STUDY OF THE FECAL I | BACTERIAL P | OPULA | TION OF CHIMPAN- | | | | 4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report - Oct 1964 to Dec 1965 | 5 | | | | | | 5. AUTHOR(S) (Lest name, first name, initial) | | | | | | | Riely, Phyllis E. | | | | | | | 6. REPORT DATE | 74. TOTAL NO. OF P | AGES | 75. NO. OF REFS | | | | May 1966 | 221 | | 51 | | | | Ba. CONTRACT OR GRANT NO. | 9a. ORIGINATOR'S RE | EPORT NUM | BER(S) | | | | AF29(600)-4991 b. PROJECT NO. | ARL-TR-66-13 | | | | | | 6892 | | | | | | | e. | 9b. OTHER REPORT | NO(S) (Any | other numbers that may be sesigned | | | | d . | FHR 2544-5 | 5FR | | | | | 10. AVAILABILITY/LIMITATION NOTICES | 111111111111111111111111111111111111111 | /+ | · · · · · · · · · · · · · · · · · · · | | | | Distribution of this document | ; is unlimited. | | | | | | 11. SUPPLEMENTARY NOTES | 12. SPONSORING MILI | TARY ACTI | VITY | | | | .:
 | 6571st Aeron
Holloman AF | | Research Laboratory w Mexico | | | | ABSTRACT Cultures isolated from recta | 1 swahs obtain | ed from | n 100 chimpanana a | | | | well as from two fecal samples from fi
The data obtained from the aerobic bac
grouping the occurrence of the Enterob
eous aerobes so that comparisons could
prior studies. The data of the occurre
were summarized in tables as obligate | ive chimpanzee
cterial studies
pacteriacea, st
d be made with
ence of the anac | e handle were su treptoco n the re erobic b | ers, were studied. ummarized in tables occus, and miscellan- sults obtained on two bacterial cultures | | | Well as from two fecal samples from five chimpanzee handlers, were studied. The data obtained from the aerobic bacterial studies were summarized in tables grouping the occurrence of the Enterobacteriacea, streptococcus, and miscellaneous aerobes so that comparisons could be made with the results obtained on two prior studies. The data of the occurrence of the anaerobic bacterial cultures were summarized in tables as obligate or facultative anaerobes, using the same method of grouping the cultures as in prior studies. Differences in the anaerobic character of chimpanzees and human fecal populations was noted; the percentage of obligate anaerobes exceeding 90% for the human cultures, and ranging between 26% and 71% for the chimpanzee cultures. A literature survey was conducted to aid in the evaluation of the potential pathogenicity of bacterial strains isolated from the chimpanzee. A remarkable similarity exists in the aerobic flora of primates, although differences in the pathogenicity of particular species of bacteria for various primate hosts have been reported in the literature. Carrier states are prevalent in the chimpanzee. The anaerobic fecal population of the chimpanzee differs from man. DD 15084 1473 Unclassified | Security Classif | | | | K A | LINK B | | LINK C * | | |------------------|-----------|------------------|------|-----|--------|----|----------|----| | 1 4 . | KEY WORDS | | ROLE | wT | ROLE | ΨT | ROLE | WT | | Primate | | | ! | | | | | ì | | Chimpanzee | | | | | | | <u> </u> | | | Man | | | | | | | | | | Bacteria | | | | | | | | | | Anaerobes | | € .,
7 | i | | | | | | | Feces | | |
 | | Ì | | | | | Aerobes | | - | Į | | | | ļ | | | | | | | | | | ļ | | | | | | | |
 | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | i | 1 | 1 | | 1 | | #### INSTRUCTIONS - 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report. - 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations. - 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized. - 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title. - 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered. - 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement. - 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication. - 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information. - 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report. - 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written. - 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc. - 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report. - 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s). - 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as: - "Qualified requesters may obtain copies of this report from DDC." - (2) "Foreign announcement and dissemination of this report by DDC is not authorized." - (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through - (5) "All distribution of this report is controlled. Qualified DDC users shall request through If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known - 11. SUPPLEMENTARY NOTES: Use for additional explana- - 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address. - 13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached. It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U). There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words. 14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional. Unclassified